Properties

Label 2-1445-1.1-c1-0-82
Degree $2$
Conductor $1445$
Sign $-1$
Analytic cond. $11.5383$
Root an. cond. $3.39681$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.43·2-s + 0.109·3-s + 0.0689·4-s + 5-s + 0.158·6-s − 0.695·7-s − 2.77·8-s − 2.98·9-s + 1.43·10-s − 4.85·11-s + 0.00758·12-s + 5.63·13-s − 0.999·14-s + 0.109·15-s − 4.13·16-s − 4.29·18-s − 2.32·19-s + 0.0689·20-s − 0.0763·21-s − 6.97·22-s − 4.63·23-s − 0.305·24-s + 25-s + 8.11·26-s − 0.658·27-s − 0.0479·28-s − 6.50·29-s + ⋯
L(s)  = 1  + 1.01·2-s + 0.0634·3-s + 0.0344·4-s + 0.447·5-s + 0.0645·6-s − 0.262·7-s − 0.982·8-s − 0.995·9-s + 0.454·10-s − 1.46·11-s + 0.00218·12-s + 1.56·13-s − 0.267·14-s + 0.0283·15-s − 1.03·16-s − 1.01·18-s − 0.532·19-s + 0.0154·20-s − 0.0166·21-s − 1.48·22-s − 0.966·23-s − 0.0623·24-s + 0.200·25-s + 1.59·26-s − 0.126·27-s − 0.00906·28-s − 1.20·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1445 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1445 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1445\)    =    \(5 \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(11.5383\)
Root analytic conductor: \(3.39681\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1445,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 - T \)
17 \( 1 \)
good2 \( 1 - 1.43T + 2T^{2} \)
3 \( 1 - 0.109T + 3T^{2} \)
7 \( 1 + 0.695T + 7T^{2} \)
11 \( 1 + 4.85T + 11T^{2} \)
13 \( 1 - 5.63T + 13T^{2} \)
19 \( 1 + 2.32T + 19T^{2} \)
23 \( 1 + 4.63T + 23T^{2} \)
29 \( 1 + 6.50T + 29T^{2} \)
31 \( 1 + 6.63T + 31T^{2} \)
37 \( 1 + 0.118T + 37T^{2} \)
41 \( 1 + 1.07T + 41T^{2} \)
43 \( 1 + 0.641T + 43T^{2} \)
47 \( 1 - 4.93T + 47T^{2} \)
53 \( 1 - 11.9T + 53T^{2} \)
59 \( 1 + 9.91T + 59T^{2} \)
61 \( 1 + 1.60T + 61T^{2} \)
67 \( 1 + 2.99T + 67T^{2} \)
71 \( 1 - 4.68T + 71T^{2} \)
73 \( 1 + 5.49T + 73T^{2} \)
79 \( 1 + 14.8T + 79T^{2} \)
83 \( 1 - 5.03T + 83T^{2} \)
89 \( 1 + 2.35T + 89T^{2} \)
97 \( 1 - 2.70T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.927723811903568177384385571750, −8.512627723419375319202666457544, −7.47087468708918540895200453255, −6.05245743115703817890495089925, −5.89002518183519086505690580304, −5.04948137468406102007760861371, −3.89165955074959006601571915719, −3.16373498657202430105749384750, −2.14404770043725092155692082593, 0, 2.14404770043725092155692082593, 3.16373498657202430105749384750, 3.89165955074959006601571915719, 5.04948137468406102007760861371, 5.89002518183519086505690580304, 6.05245743115703817890495089925, 7.47087468708918540895200453255, 8.512627723419375319202666457544, 8.927723811903568177384385571750

Graph of the $Z$-function along the critical line