Properties

Label 2-1445-1.1-c1-0-74
Degree $2$
Conductor $1445$
Sign $-1$
Analytic cond. $11.5383$
Root an. cond. $3.39681$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.04·2-s − 3.19·3-s + 2.18·4-s + 5-s − 6.53·6-s + 1.17·7-s + 0.372·8-s + 7.21·9-s + 2.04·10-s − 4.92·11-s − 6.97·12-s − 2.46·13-s + 2.40·14-s − 3.19·15-s − 3.60·16-s + 14.7·18-s + 2.04·19-s + 2.18·20-s − 3.76·21-s − 10.0·22-s − 0.119·23-s − 1.19·24-s + 25-s − 5.03·26-s − 13.4·27-s + 2.56·28-s − 1.06·29-s + ⋯
L(s)  = 1  + 1.44·2-s − 1.84·3-s + 1.09·4-s + 0.447·5-s − 2.66·6-s + 0.445·7-s + 0.131·8-s + 2.40·9-s + 0.646·10-s − 1.48·11-s − 2.01·12-s − 0.683·13-s + 0.643·14-s − 0.825·15-s − 0.900·16-s + 3.47·18-s + 0.468·19-s + 0.487·20-s − 0.821·21-s − 2.14·22-s − 0.0248·23-s − 0.243·24-s + 0.200·25-s − 0.987·26-s − 2.59·27-s + 0.485·28-s − 0.197·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1445 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1445 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1445\)    =    \(5 \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(11.5383\)
Root analytic conductor: \(3.39681\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1445,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 - T \)
17 \( 1 \)
good2 \( 1 - 2.04T + 2T^{2} \)
3 \( 1 + 3.19T + 3T^{2} \)
7 \( 1 - 1.17T + 7T^{2} \)
11 \( 1 + 4.92T + 11T^{2} \)
13 \( 1 + 2.46T + 13T^{2} \)
19 \( 1 - 2.04T + 19T^{2} \)
23 \( 1 + 0.119T + 23T^{2} \)
29 \( 1 + 1.06T + 29T^{2} \)
31 \( 1 + 2.79T + 31T^{2} \)
37 \( 1 - 2.31T + 37T^{2} \)
41 \( 1 + 0.717T + 41T^{2} \)
43 \( 1 + 10.0T + 43T^{2} \)
47 \( 1 + 3.39T + 47T^{2} \)
53 \( 1 + 13.9T + 53T^{2} \)
59 \( 1 - 1.51T + 59T^{2} \)
61 \( 1 + 8.08T + 61T^{2} \)
67 \( 1 + 4.92T + 67T^{2} \)
71 \( 1 - 6.63T + 71T^{2} \)
73 \( 1 - 3.66T + 73T^{2} \)
79 \( 1 + 8.18T + 79T^{2} \)
83 \( 1 + 6.08T + 83T^{2} \)
89 \( 1 - 8.46T + 89T^{2} \)
97 \( 1 - 4.48T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.509625390604962393179690568765, −7.927652864057253461281893216379, −7.06168582211341009354760522888, −6.24908932326722907728009794238, −5.55008930481051347108181755080, −4.98325545609968794842809011617, −4.60457960741724179943694936863, −3.17716692716915539758908411966, −1.85226751210875602443544358340, 0, 1.85226751210875602443544358340, 3.17716692716915539758908411966, 4.60457960741724179943694936863, 4.98325545609968794842809011617, 5.55008930481051347108181755080, 6.24908932326722907728009794238, 7.06168582211341009354760522888, 7.927652864057253461281893216379, 9.509625390604962393179690568765

Graph of the $Z$-function along the critical line