L(s) = 1 | + 2.04·2-s − 3.19·3-s + 2.18·4-s + 5-s − 6.53·6-s + 1.17·7-s + 0.372·8-s + 7.21·9-s + 2.04·10-s − 4.92·11-s − 6.97·12-s − 2.46·13-s + 2.40·14-s − 3.19·15-s − 3.60·16-s + 14.7·18-s + 2.04·19-s + 2.18·20-s − 3.76·21-s − 10.0·22-s − 0.119·23-s − 1.19·24-s + 25-s − 5.03·26-s − 13.4·27-s + 2.56·28-s − 1.06·29-s + ⋯ |
L(s) = 1 | + 1.44·2-s − 1.84·3-s + 1.09·4-s + 0.447·5-s − 2.66·6-s + 0.445·7-s + 0.131·8-s + 2.40·9-s + 0.646·10-s − 1.48·11-s − 2.01·12-s − 0.683·13-s + 0.643·14-s − 0.825·15-s − 0.900·16-s + 3.47·18-s + 0.468·19-s + 0.487·20-s − 0.821·21-s − 2.14·22-s − 0.0248·23-s − 0.243·24-s + 0.200·25-s − 0.987·26-s − 2.59·27-s + 0.485·28-s − 0.197·29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1445 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1445 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 - T \) |
| 17 | \( 1 \) |
good | 2 | \( 1 - 2.04T + 2T^{2} \) |
| 3 | \( 1 + 3.19T + 3T^{2} \) |
| 7 | \( 1 - 1.17T + 7T^{2} \) |
| 11 | \( 1 + 4.92T + 11T^{2} \) |
| 13 | \( 1 + 2.46T + 13T^{2} \) |
| 19 | \( 1 - 2.04T + 19T^{2} \) |
| 23 | \( 1 + 0.119T + 23T^{2} \) |
| 29 | \( 1 + 1.06T + 29T^{2} \) |
| 31 | \( 1 + 2.79T + 31T^{2} \) |
| 37 | \( 1 - 2.31T + 37T^{2} \) |
| 41 | \( 1 + 0.717T + 41T^{2} \) |
| 43 | \( 1 + 10.0T + 43T^{2} \) |
| 47 | \( 1 + 3.39T + 47T^{2} \) |
| 53 | \( 1 + 13.9T + 53T^{2} \) |
| 59 | \( 1 - 1.51T + 59T^{2} \) |
| 61 | \( 1 + 8.08T + 61T^{2} \) |
| 67 | \( 1 + 4.92T + 67T^{2} \) |
| 71 | \( 1 - 6.63T + 71T^{2} \) |
| 73 | \( 1 - 3.66T + 73T^{2} \) |
| 79 | \( 1 + 8.18T + 79T^{2} \) |
| 83 | \( 1 + 6.08T + 83T^{2} \) |
| 89 | \( 1 - 8.46T + 89T^{2} \) |
| 97 | \( 1 - 4.48T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.509625390604962393179690568765, −7.927652864057253461281893216379, −7.06168582211341009354760522888, −6.24908932326722907728009794238, −5.55008930481051347108181755080, −4.98325545609968794842809011617, −4.60457960741724179943694936863, −3.17716692716915539758908411966, −1.85226751210875602443544358340, 0,
1.85226751210875602443544358340, 3.17716692716915539758908411966, 4.60457960741724179943694936863, 4.98325545609968794842809011617, 5.55008930481051347108181755080, 6.24908932326722907728009794238, 7.06168582211341009354760522888, 7.927652864057253461281893216379, 9.509625390604962393179690568765