L(s) = 1 | − 1.80·2-s + 0.687·3-s + 1.26·4-s + 5-s − 1.24·6-s − 4.34·7-s + 1.33·8-s − 2.52·9-s − 1.80·10-s − 0.0525·11-s + 0.867·12-s + 3.02·13-s + 7.84·14-s + 0.687·15-s − 4.93·16-s + 4.56·18-s + 7.82·19-s + 1.26·20-s − 2.98·21-s + 0.0948·22-s + 1.04·23-s + 0.918·24-s + 25-s − 5.46·26-s − 3.80·27-s − 5.47·28-s − 0.420·29-s + ⋯ |
L(s) = 1 | − 1.27·2-s + 0.397·3-s + 0.630·4-s + 0.447·5-s − 0.507·6-s − 1.64·7-s + 0.471·8-s − 0.842·9-s − 0.571·10-s − 0.0158·11-s + 0.250·12-s + 0.839·13-s + 2.09·14-s + 0.177·15-s − 1.23·16-s + 1.07·18-s + 1.79·19-s + 0.281·20-s − 0.651·21-s + 0.0202·22-s + 0.217·23-s + 0.187·24-s + 0.200·25-s − 1.07·26-s − 0.731·27-s − 1.03·28-s − 0.0781·29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1445 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1445 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 - T \) |
| 17 | \( 1 \) |
good | 2 | \( 1 + 1.80T + 2T^{2} \) |
| 3 | \( 1 - 0.687T + 3T^{2} \) |
| 7 | \( 1 + 4.34T + 7T^{2} \) |
| 11 | \( 1 + 0.0525T + 11T^{2} \) |
| 13 | \( 1 - 3.02T + 13T^{2} \) |
| 19 | \( 1 - 7.82T + 19T^{2} \) |
| 23 | \( 1 - 1.04T + 23T^{2} \) |
| 29 | \( 1 + 0.420T + 29T^{2} \) |
| 31 | \( 1 - 1.38T + 31T^{2} \) |
| 37 | \( 1 - 0.336T + 37T^{2} \) |
| 41 | \( 1 + 6.59T + 41T^{2} \) |
| 43 | \( 1 + 9.99T + 43T^{2} \) |
| 47 | \( 1 + 6.13T + 47T^{2} \) |
| 53 | \( 1 + 12.0T + 53T^{2} \) |
| 59 | \( 1 + 5.09T + 59T^{2} \) |
| 61 | \( 1 + 5.97T + 61T^{2} \) |
| 67 | \( 1 + 0.916T + 67T^{2} \) |
| 71 | \( 1 - 4.17T + 71T^{2} \) |
| 73 | \( 1 + 5.39T + 73T^{2} \) |
| 79 | \( 1 + 9.98T + 79T^{2} \) |
| 83 | \( 1 - 6.53T + 83T^{2} \) |
| 89 | \( 1 - 10.2T + 89T^{2} \) |
| 97 | \( 1 + 19.2T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.280590577751449854053512809153, −8.526635624653893695280499207482, −7.76545023849077954126594307073, −6.79380846295355365628262463832, −6.13531818041269400846136361854, −5.09677864286966440876310271570, −3.49159486780503973117175528517, −2.90621645228161039720524523040, −1.43614997498796148765797655920, 0,
1.43614997498796148765797655920, 2.90621645228161039720524523040, 3.49159486780503973117175528517, 5.09677864286966440876310271570, 6.13531818041269400846136361854, 6.79380846295355365628262463832, 7.76545023849077954126594307073, 8.526635624653893695280499207482, 9.280590577751449854053512809153