Properties

Label 2-1445-1.1-c1-0-49
Degree $2$
Conductor $1445$
Sign $1$
Analytic cond. $11.5383$
Root an. cond. $3.39681$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.747·2-s + 3.07·3-s − 1.44·4-s − 5-s + 2.29·6-s + 3.23·7-s − 2.57·8-s + 6.45·9-s − 0.747·10-s − 2.73·11-s − 4.42·12-s + 4.31·13-s + 2.41·14-s − 3.07·15-s + 0.956·16-s + 4.82·18-s + 1.26·19-s + 1.44·20-s + 9.94·21-s − 2.04·22-s − 0.492·23-s − 7.91·24-s + 25-s + 3.22·26-s + 10.6·27-s − 4.65·28-s + 0.444·29-s + ⋯
L(s)  = 1  + 0.528·2-s + 1.77·3-s − 0.720·4-s − 0.447·5-s + 0.938·6-s + 1.22·7-s − 0.909·8-s + 2.15·9-s − 0.236·10-s − 0.824·11-s − 1.27·12-s + 1.19·13-s + 0.646·14-s − 0.793·15-s + 0.239·16-s + 1.13·18-s + 0.291·19-s + 0.322·20-s + 2.16·21-s − 0.436·22-s − 0.102·23-s − 1.61·24-s + 0.200·25-s + 0.633·26-s + 2.04·27-s − 0.880·28-s + 0.0825·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1445 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1445 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1445\)    =    \(5 \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(11.5383\)
Root analytic conductor: \(3.39681\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1445,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.598247273\)
\(L(\frac12)\) \(\approx\) \(3.598247273\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + T \)
17 \( 1 \)
good2 \( 1 - 0.747T + 2T^{2} \)
3 \( 1 - 3.07T + 3T^{2} \)
7 \( 1 - 3.23T + 7T^{2} \)
11 \( 1 + 2.73T + 11T^{2} \)
13 \( 1 - 4.31T + 13T^{2} \)
19 \( 1 - 1.26T + 19T^{2} \)
23 \( 1 + 0.492T + 23T^{2} \)
29 \( 1 - 0.444T + 29T^{2} \)
31 \( 1 - 5.52T + 31T^{2} \)
37 \( 1 - 10.6T + 37T^{2} \)
41 \( 1 + 2.17T + 41T^{2} \)
43 \( 1 + 2.16T + 43T^{2} \)
47 \( 1 + 8.39T + 47T^{2} \)
53 \( 1 + 1.81T + 53T^{2} \)
59 \( 1 + 3.01T + 59T^{2} \)
61 \( 1 + 12.2T + 61T^{2} \)
67 \( 1 - 4.21T + 67T^{2} \)
71 \( 1 + 3.89T + 71T^{2} \)
73 \( 1 + 6.47T + 73T^{2} \)
79 \( 1 - 7.22T + 79T^{2} \)
83 \( 1 - 0.227T + 83T^{2} \)
89 \( 1 + 13.3T + 89T^{2} \)
97 \( 1 - 14.8T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.290824264043288182281981105873, −8.469609232826591955037385123653, −8.147836022068168120147067095545, −7.58064840198328418147950049294, −6.19100403381059681957792236832, −4.92594266740080162096959444058, −4.34734396431764754732375338439, −3.47849825985303737030577763010, −2.70148030880171466571022639414, −1.35847106090730897120407892690, 1.35847106090730897120407892690, 2.70148030880171466571022639414, 3.47849825985303737030577763010, 4.34734396431764754732375338439, 4.92594266740080162096959444058, 6.19100403381059681957792236832, 7.58064840198328418147950049294, 8.147836022068168120147067095545, 8.469609232826591955037385123653, 9.290824264043288182281981105873

Graph of the $Z$-function along the critical line