Properties

Label 2-1445-1.1-c1-0-3
Degree $2$
Conductor $1445$
Sign $1$
Analytic cond. $11.5383$
Root an. cond. $3.39681$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.301·2-s − 1.06·3-s − 1.90·4-s − 5-s − 0.320·6-s − 2.50·7-s − 1.17·8-s − 1.87·9-s − 0.301·10-s + 2.44·11-s + 2.02·12-s − 5.61·13-s − 0.757·14-s + 1.06·15-s + 3.46·16-s − 0.565·18-s − 7.13·19-s + 1.90·20-s + 2.66·21-s + 0.737·22-s − 0.860·23-s + 1.25·24-s + 25-s − 1.69·26-s + 5.17·27-s + 4.79·28-s + 3.75·29-s + ⋯
L(s)  = 1  + 0.213·2-s − 0.612·3-s − 0.954·4-s − 0.447·5-s − 0.130·6-s − 0.948·7-s − 0.416·8-s − 0.624·9-s − 0.0954·10-s + 0.737·11-s + 0.584·12-s − 1.55·13-s − 0.202·14-s + 0.273·15-s + 0.865·16-s − 0.133·18-s − 1.63·19-s + 0.426·20-s + 0.581·21-s + 0.157·22-s − 0.179·23-s + 0.255·24-s + 0.200·25-s − 0.332·26-s + 0.995·27-s + 0.905·28-s + 0.696·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1445 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1445 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1445\)    =    \(5 \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(11.5383\)
Root analytic conductor: \(3.39681\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1445,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.4056371560\)
\(L(\frac12)\) \(\approx\) \(0.4056371560\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + T \)
17 \( 1 \)
good2 \( 1 - 0.301T + 2T^{2} \)
3 \( 1 + 1.06T + 3T^{2} \)
7 \( 1 + 2.50T + 7T^{2} \)
11 \( 1 - 2.44T + 11T^{2} \)
13 \( 1 + 5.61T + 13T^{2} \)
19 \( 1 + 7.13T + 19T^{2} \)
23 \( 1 + 0.860T + 23T^{2} \)
29 \( 1 - 3.75T + 29T^{2} \)
31 \( 1 + 2.24T + 31T^{2} \)
37 \( 1 + 5.10T + 37T^{2} \)
41 \( 1 - 12.3T + 41T^{2} \)
43 \( 1 + 2.62T + 43T^{2} \)
47 \( 1 + 2.30T + 47T^{2} \)
53 \( 1 - 2.77T + 53T^{2} \)
59 \( 1 - 7.44T + 59T^{2} \)
61 \( 1 - 0.906T + 61T^{2} \)
67 \( 1 - 6.69T + 67T^{2} \)
71 \( 1 + 0.240T + 71T^{2} \)
73 \( 1 + 6.45T + 73T^{2} \)
79 \( 1 - 14.7T + 79T^{2} \)
83 \( 1 - 13.8T + 83T^{2} \)
89 \( 1 + 0.395T + 89T^{2} \)
97 \( 1 + 8.95T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.501049348894694417735272226134, −8.823387848317346108520743351530, −8.030575132529231181560146153612, −6.86983243172909308470023191257, −6.22923697939109420508879523543, −5.29301845460768341768850664647, −4.48825813034515604019833446902, −3.67357352188819069056700689616, −2.55746243486070783292416345739, −0.43265333212488750223838368208, 0.43265333212488750223838368208, 2.55746243486070783292416345739, 3.67357352188819069056700689616, 4.48825813034515604019833446902, 5.29301845460768341768850664647, 6.22923697939109420508879523543, 6.86983243172909308470023191257, 8.030575132529231181560146153612, 8.823387848317346108520743351530, 9.501049348894694417735272226134

Graph of the $Z$-function along the critical line