Properties

Label 2-1445-1.1-c1-0-20
Degree $2$
Conductor $1445$
Sign $1$
Analytic cond. $11.5383$
Root an. cond. $3.39681$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.80·2-s − 0.687·3-s + 1.26·4-s − 5-s + 1.24·6-s + 4.34·7-s + 1.33·8-s − 2.52·9-s + 1.80·10-s + 0.0525·11-s − 0.867·12-s + 3.02·13-s − 7.84·14-s + 0.687·15-s − 4.93·16-s + 4.56·18-s + 7.82·19-s − 1.26·20-s − 2.98·21-s − 0.0948·22-s − 1.04·23-s − 0.918·24-s + 25-s − 5.46·26-s + 3.80·27-s + 5.47·28-s + 0.420·29-s + ⋯
L(s)  = 1  − 1.27·2-s − 0.397·3-s + 0.630·4-s − 0.447·5-s + 0.507·6-s + 1.64·7-s + 0.471·8-s − 0.842·9-s + 0.571·10-s + 0.0158·11-s − 0.250·12-s + 0.839·13-s − 2.09·14-s + 0.177·15-s − 1.23·16-s + 1.07·18-s + 1.79·19-s − 0.281·20-s − 0.651·21-s − 0.0202·22-s − 0.217·23-s − 0.187·24-s + 0.200·25-s − 1.07·26-s + 0.731·27-s + 1.03·28-s + 0.0781·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1445 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1445 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1445\)    =    \(5 \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(11.5383\)
Root analytic conductor: \(3.39681\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1445,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7783764286\)
\(L(\frac12)\) \(\approx\) \(0.7783764286\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + T \)
17 \( 1 \)
good2 \( 1 + 1.80T + 2T^{2} \)
3 \( 1 + 0.687T + 3T^{2} \)
7 \( 1 - 4.34T + 7T^{2} \)
11 \( 1 - 0.0525T + 11T^{2} \)
13 \( 1 - 3.02T + 13T^{2} \)
19 \( 1 - 7.82T + 19T^{2} \)
23 \( 1 + 1.04T + 23T^{2} \)
29 \( 1 - 0.420T + 29T^{2} \)
31 \( 1 + 1.38T + 31T^{2} \)
37 \( 1 + 0.336T + 37T^{2} \)
41 \( 1 - 6.59T + 41T^{2} \)
43 \( 1 + 9.99T + 43T^{2} \)
47 \( 1 + 6.13T + 47T^{2} \)
53 \( 1 + 12.0T + 53T^{2} \)
59 \( 1 + 5.09T + 59T^{2} \)
61 \( 1 - 5.97T + 61T^{2} \)
67 \( 1 + 0.916T + 67T^{2} \)
71 \( 1 + 4.17T + 71T^{2} \)
73 \( 1 - 5.39T + 73T^{2} \)
79 \( 1 - 9.98T + 79T^{2} \)
83 \( 1 - 6.53T + 83T^{2} \)
89 \( 1 - 10.2T + 89T^{2} \)
97 \( 1 - 19.2T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.339021961730933248008826026530, −8.662538826385450375701339323709, −7.942257677751851610749559173586, −7.63684265869416384332197944598, −6.43204807439894410485524636184, −5.28863888078946966891267945301, −4.68674871945243760208679486247, −3.35625917344845633341379530438, −1.80851601448760275402702615833, −0.828752504881412120088281039262, 0.828752504881412120088281039262, 1.80851601448760275402702615833, 3.35625917344845633341379530438, 4.68674871945243760208679486247, 5.28863888078946966891267945301, 6.43204807439894410485524636184, 7.63684265869416384332197944598, 7.942257677751851610749559173586, 8.662538826385450375701339323709, 9.339021961730933248008826026530

Graph of the $Z$-function along the critical line