Properties

Label 2-14415-1.1-c1-0-3
Degree $2$
Conductor $14415$
Sign $1$
Analytic cond. $115.104$
Root an. cond. $10.7286$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s − 4-s + 5-s − 6-s + 3·8-s + 9-s − 10-s + 4·11-s − 12-s + 2·13-s + 15-s − 16-s − 2·17-s − 18-s + 4·19-s − 20-s − 4·22-s + 3·24-s + 25-s − 2·26-s + 27-s + 2·29-s − 30-s − 5·32-s + 4·33-s + 2·34-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s − 1/2·4-s + 0.447·5-s − 0.408·6-s + 1.06·8-s + 1/3·9-s − 0.316·10-s + 1.20·11-s − 0.288·12-s + 0.554·13-s + 0.258·15-s − 1/4·16-s − 0.485·17-s − 0.235·18-s + 0.917·19-s − 0.223·20-s − 0.852·22-s + 0.612·24-s + 1/5·25-s − 0.392·26-s + 0.192·27-s + 0.371·29-s − 0.182·30-s − 0.883·32-s + 0.696·33-s + 0.342·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 14415 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 14415 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(14415\)    =    \(3 \cdot 5 \cdot 31^{2}\)
Sign: $1$
Analytic conductor: \(115.104\)
Root analytic conductor: \(10.7286\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 14415,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.293548531\)
\(L(\frac12)\) \(\approx\) \(2.293548531\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - T \)
5 \( 1 - T \)
31 \( 1 \)
good2 \( 1 + T + p T^{2} \)
7 \( 1 + p T^{2} \)
11 \( 1 - 4 T + p T^{2} \)
13 \( 1 - 2 T + p T^{2} \)
17 \( 1 + 2 T + p T^{2} \)
19 \( 1 - 4 T + p T^{2} \)
23 \( 1 + p T^{2} \)
29 \( 1 - 2 T + p T^{2} \)
37 \( 1 - 10 T + p T^{2} \)
41 \( 1 - 10 T + p T^{2} \)
43 \( 1 + 4 T + p T^{2} \)
47 \( 1 - 8 T + p T^{2} \)
53 \( 1 - 10 T + p T^{2} \)
59 \( 1 + 4 T + p T^{2} \)
61 \( 1 - 2 T + p T^{2} \)
67 \( 1 - 12 T + p T^{2} \)
71 \( 1 + 8 T + p T^{2} \)
73 \( 1 + 10 T + p T^{2} \)
79 \( 1 + p T^{2} \)
83 \( 1 + 12 T + p T^{2} \)
89 \( 1 - 6 T + p T^{2} \)
97 \( 1 - 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.16794171727104, −15.72933349060585, −14.76716257784066, −14.43645436858361, −13.90988221229338, −13.35602697588368, −12.98213989062862, −12.17540651757322, −11.45187923155449, −10.92709379082204, −10.16335858261843, −9.623815085347354, −9.223978130094169, −8.752114695372547, −8.171383858653182, −7.488359096159968, −6.893996779456610, −6.127358842906413, −5.465212030158474, −4.442925271805524, −4.122305666468883, −3.241097610702859, −2.333661075480660, −1.383630623374400, −0.8327825402824426, 0.8327825402824426, 1.383630623374400, 2.333661075480660, 3.241097610702859, 4.122305666468883, 4.442925271805524, 5.465212030158474, 6.127358842906413, 6.893996779456610, 7.488359096159968, 8.171383858653182, 8.752114695372547, 9.223978130094169, 9.623815085347354, 10.16335858261843, 10.92709379082204, 11.45187923155449, 12.17540651757322, 12.98213989062862, 13.35602697588368, 13.90988221229338, 14.43645436858361, 14.76716257784066, 15.72933349060585, 16.16794171727104

Graph of the $Z$-function along the critical line