L(s) = 1 | + (11 + 2i)5-s + 92i·13-s − 104i·17-s + (117 + 44i)25-s + 130·29-s + 396i·37-s − 230·41-s + 343·49-s + 572i·53-s − 830·61-s + (−184 + 1.01e3i)65-s − 592i·73-s + (208 − 1.14e3i)85-s + 1.67e3·89-s + 1.81e3i·97-s + ⋯ |
L(s) = 1 | + (0.983 + 0.178i)5-s + 1.96i·13-s − 1.48i·17-s + (0.936 + 0.351i)25-s + 0.832·29-s + 1.75i·37-s − 0.876·41-s + 49-s + 1.48i·53-s − 1.74·61-s + (−0.351 + 1.93i)65-s − 0.949i·73-s + (0.265 − 1.45i)85-s + 1.98·89-s + 1.90i·97-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1440 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.178 - 0.983i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1440 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.178 - 0.983i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(2.335352297\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.335352297\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-11 - 2i)T \) |
good | 7 | \( 1 - 343T^{2} \) |
| 11 | \( 1 + 1.33e3T^{2} \) |
| 13 | \( 1 - 92iT - 2.19e3T^{2} \) |
| 17 | \( 1 + 104iT - 4.91e3T^{2} \) |
| 19 | \( 1 + 6.85e3T^{2} \) |
| 23 | \( 1 - 1.21e4T^{2} \) |
| 29 | \( 1 - 130T + 2.43e4T^{2} \) |
| 31 | \( 1 + 2.97e4T^{2} \) |
| 37 | \( 1 - 396iT - 5.06e4T^{2} \) |
| 41 | \( 1 + 230T + 6.89e4T^{2} \) |
| 43 | \( 1 - 7.95e4T^{2} \) |
| 47 | \( 1 - 1.03e5T^{2} \) |
| 53 | \( 1 - 572iT - 1.48e5T^{2} \) |
| 59 | \( 1 + 2.05e5T^{2} \) |
| 61 | \( 1 + 830T + 2.26e5T^{2} \) |
| 67 | \( 1 - 3.00e5T^{2} \) |
| 71 | \( 1 + 3.57e5T^{2} \) |
| 73 | \( 1 + 592iT - 3.89e5T^{2} \) |
| 79 | \( 1 + 4.93e5T^{2} \) |
| 83 | \( 1 - 5.71e5T^{2} \) |
| 89 | \( 1 - 1.67e3T + 7.04e5T^{2} \) |
| 97 | \( 1 - 1.81e3iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.242606567388223089449599647044, −8.890496686440826494482025201192, −7.59535219715772785118389792195, −6.72653752534507400394146930512, −6.27980778682208315304315181533, −5.07288415754077701735273686599, −4.46881877869629376655316573814, −3.09343047945337872246443849535, −2.18163134816094451808498914948, −1.17842050602854067873942581935,
0.53515995628464418432660124075, 1.69151459256242394577532870725, 2.75461304999521101785378732319, 3.74614084849373086636683863282, 4.99673806143160264075215229592, 5.72393850744701288430332696177, 6.30165611412243143443785106388, 7.43918566237217857947698655768, 8.302487456275872774522789583781, 8.886388621346417316408307534218