Properties

Label 2-1440-1.1-c3-0-54
Degree $2$
Conductor $1440$
Sign $-1$
Analytic cond. $84.9627$
Root an. cond. $9.21752$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5·5-s − 1.74·7-s + 28.9·11-s − 48.2·13-s − 16.2·17-s + 130.·19-s − 182.·23-s + 25·25-s − 291.·29-s − 219.·31-s − 8.73·35-s + 436.·37-s + 339.·41-s − 316.·43-s + 335.·47-s − 339.·49-s + 520.·53-s + 144.·55-s − 589.·59-s − 566.·61-s − 241.·65-s − 407.·67-s − 486.·71-s + 143.·73-s − 50.6·77-s − 968.·79-s + 532.·83-s + ⋯
L(s)  = 1  + 0.447·5-s − 0.0943·7-s + 0.794·11-s − 1.02·13-s − 0.231·17-s + 1.57·19-s − 1.65·23-s + 0.200·25-s − 1.86·29-s − 1.27·31-s − 0.0422·35-s + 1.93·37-s + 1.29·41-s − 1.12·43-s + 1.04·47-s − 0.991·49-s + 1.34·53-s + 0.355·55-s − 1.30·59-s − 1.18·61-s − 0.460·65-s − 0.742·67-s − 0.812·71-s + 0.229·73-s − 0.0749·77-s − 1.37·79-s + 0.704·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1440 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1440 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1440\)    =    \(2^{5} \cdot 3^{2} \cdot 5\)
Sign: $-1$
Analytic conductor: \(84.9627\)
Root analytic conductor: \(9.21752\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1440,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - 5T \)
good7 \( 1 + 1.74T + 343T^{2} \)
11 \( 1 - 28.9T + 1.33e3T^{2} \)
13 \( 1 + 48.2T + 2.19e3T^{2} \)
17 \( 1 + 16.2T + 4.91e3T^{2} \)
19 \( 1 - 130.T + 6.85e3T^{2} \)
23 \( 1 + 182.T + 1.21e4T^{2} \)
29 \( 1 + 291.T + 2.43e4T^{2} \)
31 \( 1 + 219.T + 2.97e4T^{2} \)
37 \( 1 - 436.T + 5.06e4T^{2} \)
41 \( 1 - 339.T + 6.89e4T^{2} \)
43 \( 1 + 316.T + 7.95e4T^{2} \)
47 \( 1 - 335.T + 1.03e5T^{2} \)
53 \( 1 - 520.T + 1.48e5T^{2} \)
59 \( 1 + 589.T + 2.05e5T^{2} \)
61 \( 1 + 566.T + 2.26e5T^{2} \)
67 \( 1 + 407.T + 3.00e5T^{2} \)
71 \( 1 + 486.T + 3.57e5T^{2} \)
73 \( 1 - 143.T + 3.89e5T^{2} \)
79 \( 1 + 968.T + 4.93e5T^{2} \)
83 \( 1 - 532.T + 5.71e5T^{2} \)
89 \( 1 + 67.8T + 7.04e5T^{2} \)
97 \( 1 - 218.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.073180343976784726053683688673, −7.67539048431542725388536399193, −7.36443228676133439221025434157, −6.13163026196531398169423075138, −5.59232907393231261345645768659, −4.49524381585693470399921055117, −3.58521276633886909727825683369, −2.42806249527417820001900267067, −1.43616967379359230042493228342, 0, 1.43616967379359230042493228342, 2.42806249527417820001900267067, 3.58521276633886909727825683369, 4.49524381585693470399921055117, 5.59232907393231261345645768659, 6.13163026196531398169423075138, 7.36443228676133439221025434157, 7.67539048431542725388536399193, 9.073180343976784726053683688673

Graph of the $Z$-function along the critical line