L(s) = 1 | − 5·5-s + 32·7-s − 64·11-s − 6·13-s − 38·17-s − 116·19-s + 120·23-s + 25·25-s + 122·29-s + 164·31-s − 160·35-s + 146·37-s + 238·41-s − 148·43-s + 184·47-s + 681·49-s − 470·53-s + 320·55-s + 216·59-s + 806·61-s + 30·65-s − 732·67-s − 264·71-s − 638·73-s − 2.04e3·77-s + 596·79-s + 884·83-s + ⋯ |
L(s) = 1 | − 0.447·5-s + 1.72·7-s − 1.75·11-s − 0.128·13-s − 0.542·17-s − 1.40·19-s + 1.08·23-s + 1/5·25-s + 0.781·29-s + 0.950·31-s − 0.772·35-s + 0.648·37-s + 0.906·41-s − 0.524·43-s + 0.571·47-s + 1.98·49-s − 1.21·53-s + 0.784·55-s + 0.476·59-s + 1.69·61-s + 0.0572·65-s − 1.33·67-s − 0.441·71-s − 1.02·73-s − 3.03·77-s + 0.848·79-s + 1.16·83-s + ⋯ |
Λ(s)=(=(1440s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(1440s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
1.939667390 |
L(21) |
≈ |
1.939667390 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1+pT |
good | 7 | 1−32T+p3T2 |
| 11 | 1+64T+p3T2 |
| 13 | 1+6T+p3T2 |
| 17 | 1+38T+p3T2 |
| 19 | 1+116T+p3T2 |
| 23 | 1−120T+p3T2 |
| 29 | 1−122T+p3T2 |
| 31 | 1−164T+p3T2 |
| 37 | 1−146T+p3T2 |
| 41 | 1−238T+p3T2 |
| 43 | 1+148T+p3T2 |
| 47 | 1−184T+p3T2 |
| 53 | 1+470T+p3T2 |
| 59 | 1−216T+p3T2 |
| 61 | 1−806T+p3T2 |
| 67 | 1+732T+p3T2 |
| 71 | 1+264T+p3T2 |
| 73 | 1+638T+p3T2 |
| 79 | 1−596T+p3T2 |
| 83 | 1−884T+p3T2 |
| 89 | 1+930T+p3T2 |
| 97 | 1−322T+p3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.870017360566454134041475571094, −8.222865535898623116303426649794, −7.79898643419207128714246271461, −6.88299930433256774026635223295, −5.69765821472405700922559400059, −4.74018066909448217879659390512, −4.45795335143521183959730068488, −2.84718238724257255418807461441, −2.04211362598052834391328688738, −0.67913846168074242709035281313,
0.67913846168074242709035281313, 2.04211362598052834391328688738, 2.84718238724257255418807461441, 4.45795335143521183959730068488, 4.74018066909448217879659390512, 5.69765821472405700922559400059, 6.88299930433256774026635223295, 7.79898643419207128714246271461, 8.222865535898623116303426649794, 8.870017360566454134041475571094