Properties

Label 2-1440-1.1-c3-0-15
Degree $2$
Conductor $1440$
Sign $1$
Analytic cond. $84.9627$
Root an. cond. $9.21752$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5·5-s + 32·7-s − 64·11-s − 6·13-s − 38·17-s − 116·19-s + 120·23-s + 25·25-s + 122·29-s + 164·31-s − 160·35-s + 146·37-s + 238·41-s − 148·43-s + 184·47-s + 681·49-s − 470·53-s + 320·55-s + 216·59-s + 806·61-s + 30·65-s − 732·67-s − 264·71-s − 638·73-s − 2.04e3·77-s + 596·79-s + 884·83-s + ⋯
L(s)  = 1  − 0.447·5-s + 1.72·7-s − 1.75·11-s − 0.128·13-s − 0.542·17-s − 1.40·19-s + 1.08·23-s + 1/5·25-s + 0.781·29-s + 0.950·31-s − 0.772·35-s + 0.648·37-s + 0.906·41-s − 0.524·43-s + 0.571·47-s + 1.98·49-s − 1.21·53-s + 0.784·55-s + 0.476·59-s + 1.69·61-s + 0.0572·65-s − 1.33·67-s − 0.441·71-s − 1.02·73-s − 3.03·77-s + 0.848·79-s + 1.16·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1440 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1440 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1440\)    =    \(2^{5} \cdot 3^{2} \cdot 5\)
Sign: $1$
Analytic conductor: \(84.9627\)
Root analytic conductor: \(9.21752\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1440,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.939667390\)
\(L(\frac12)\) \(\approx\) \(1.939667390\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + p T \)
good7 \( 1 - 32 T + p^{3} T^{2} \)
11 \( 1 + 64 T + p^{3} T^{2} \)
13 \( 1 + 6 T + p^{3} T^{2} \)
17 \( 1 + 38 T + p^{3} T^{2} \)
19 \( 1 + 116 T + p^{3} T^{2} \)
23 \( 1 - 120 T + p^{3} T^{2} \)
29 \( 1 - 122 T + p^{3} T^{2} \)
31 \( 1 - 164 T + p^{3} T^{2} \)
37 \( 1 - 146 T + p^{3} T^{2} \)
41 \( 1 - 238 T + p^{3} T^{2} \)
43 \( 1 + 148 T + p^{3} T^{2} \)
47 \( 1 - 184 T + p^{3} T^{2} \)
53 \( 1 + 470 T + p^{3} T^{2} \)
59 \( 1 - 216 T + p^{3} T^{2} \)
61 \( 1 - 806 T + p^{3} T^{2} \)
67 \( 1 + 732 T + p^{3} T^{2} \)
71 \( 1 + 264 T + p^{3} T^{2} \)
73 \( 1 + 638 T + p^{3} T^{2} \)
79 \( 1 - 596 T + p^{3} T^{2} \)
83 \( 1 - 884 T + p^{3} T^{2} \)
89 \( 1 + 930 T + p^{3} T^{2} \)
97 \( 1 - 322 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.870017360566454134041475571094, −8.222865535898623116303426649794, −7.79898643419207128714246271461, −6.88299930433256774026635223295, −5.69765821472405700922559400059, −4.74018066909448217879659390512, −4.45795335143521183959730068488, −2.84718238724257255418807461441, −2.04211362598052834391328688738, −0.67913846168074242709035281313, 0.67913846168074242709035281313, 2.04211362598052834391328688738, 2.84718238724257255418807461441, 4.45795335143521183959730068488, 4.74018066909448217879659390512, 5.69765821472405700922559400059, 6.88299930433256774026635223295, 7.79898643419207128714246271461, 8.222865535898623116303426649794, 8.870017360566454134041475571094

Graph of the $Z$-function along the critical line