Properties

Label 2-1440-1.1-c3-0-11
Degree $2$
Conductor $1440$
Sign $1$
Analytic cond. $84.9627$
Root an. cond. $9.21752$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5·5-s − 18.4·7-s + 55.3·11-s + 52·13-s − 66·17-s + 36.8·23-s + 25·25-s + 46·29-s − 258.·31-s + 92.1·35-s − 24·37-s − 72·41-s − 331.·47-s − 3·49-s + 62·53-s − 276.·55-s − 239.·59-s − 190·61-s − 260·65-s + 774.·67-s − 626.·71-s + 1.07e3·73-s − 1.02e3·77-s + 848.·79-s + 774.·83-s + 330·85-s + 1.11e3·89-s + ⋯
L(s)  = 1  − 0.447·5-s − 0.995·7-s + 1.51·11-s + 1.10·13-s − 0.941·17-s + 0.334·23-s + 0.200·25-s + 0.294·29-s − 1.49·31-s + 0.445·35-s − 0.106·37-s − 0.274·41-s − 1.03·47-s − 0.00874·49-s + 0.160·53-s − 0.678·55-s − 0.528·59-s − 0.398·61-s − 0.496·65-s + 1.41·67-s − 1.04·71-s + 1.72·73-s − 1.50·77-s + 1.20·79-s + 1.02·83-s + 0.421·85-s + 1.32·89-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1440 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1440 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1440\)    =    \(2^{5} \cdot 3^{2} \cdot 5\)
Sign: $1$
Analytic conductor: \(84.9627\)
Root analytic conductor: \(9.21752\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1440,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.692155108\)
\(L(\frac12)\) \(\approx\) \(1.692155108\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + 5T \)
good7 \( 1 + 18.4T + 343T^{2} \)
11 \( 1 - 55.3T + 1.33e3T^{2} \)
13 \( 1 - 52T + 2.19e3T^{2} \)
17 \( 1 + 66T + 4.91e3T^{2} \)
19 \( 1 + 6.85e3T^{2} \)
23 \( 1 - 36.8T + 1.21e4T^{2} \)
29 \( 1 - 46T + 2.43e4T^{2} \)
31 \( 1 + 258.T + 2.97e4T^{2} \)
37 \( 1 + 24T + 5.06e4T^{2} \)
41 \( 1 + 72T + 6.89e4T^{2} \)
43 \( 1 + 7.95e4T^{2} \)
47 \( 1 + 331.T + 1.03e5T^{2} \)
53 \( 1 - 62T + 1.48e5T^{2} \)
59 \( 1 + 239.T + 2.05e5T^{2} \)
61 \( 1 + 190T + 2.26e5T^{2} \)
67 \( 1 - 774.T + 3.00e5T^{2} \)
71 \( 1 + 626.T + 3.57e5T^{2} \)
73 \( 1 - 1.07e3T + 3.89e5T^{2} \)
79 \( 1 - 848.T + 4.93e5T^{2} \)
83 \( 1 - 774.T + 5.71e5T^{2} \)
89 \( 1 - 1.11e3T + 7.04e5T^{2} \)
97 \( 1 - 834T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.068698514318895835479275763756, −8.607948125563137605126435209120, −7.44038854039354721481316222609, −6.51978728412169181921754885038, −6.24395935838275332120558185399, −4.87941460860084438545567647678, −3.78497038272051989190693286804, −3.38871306543739995311897237341, −1.86521474621137072072686589574, −0.64655032527873099175723064487, 0.64655032527873099175723064487, 1.86521474621137072072686589574, 3.38871306543739995311897237341, 3.78497038272051989190693286804, 4.87941460860084438545567647678, 6.24395935838275332120558185399, 6.51978728412169181921754885038, 7.44038854039354721481316222609, 8.607948125563137605126435209120, 9.068698514318895835479275763756

Graph of the $Z$-function along the critical line