L(s) = 1 | + (−1.91 − 1.38i)2-s + (0.850 − 2.61i)3-s + (1.10 + 3.40i)4-s + (−1.81 + 1.31i)5-s + (−5.26 + 3.82i)6-s + (−1.38 − 4.27i)7-s + (1.15 − 3.54i)8-s + (−3.70 − 2.69i)9-s + 5.29·10-s + (−0.676 + 3.24i)11-s + 9.85·12-s + (−0.809 − 0.587i)13-s + (−3.27 + 10.0i)14-s + (1.90 + 5.86i)15-s + (−1.33 + 0.969i)16-s + (0.419 − 0.304i)17-s + ⋯ |
L(s) = 1 | + (−1.35 − 0.981i)2-s + (0.491 − 1.51i)3-s + (0.552 + 1.70i)4-s + (−0.810 + 0.589i)5-s + (−2.14 + 1.56i)6-s + (−0.524 − 1.61i)7-s + (0.407 − 1.25i)8-s + (−1.23 − 0.896i)9-s + 1.67·10-s + (−0.204 + 0.978i)11-s + 2.84·12-s + (−0.224 − 0.163i)13-s + (−0.875 + 2.69i)14-s + (0.492 + 1.51i)15-s + (−0.333 + 0.242i)16-s + (0.101 − 0.0738i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 143 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.879 - 0.475i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 143 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.879 - 0.475i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.106714 + 0.421533i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.106714 + 0.421533i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 11 | \( 1 + (0.676 - 3.24i)T \) |
| 13 | \( 1 + (0.809 + 0.587i)T \) |
good | 2 | \( 1 + (1.91 + 1.38i)T + (0.618 + 1.90i)T^{2} \) |
| 3 | \( 1 + (-0.850 + 2.61i)T + (-2.42 - 1.76i)T^{2} \) |
| 5 | \( 1 + (1.81 - 1.31i)T + (1.54 - 4.75i)T^{2} \) |
| 7 | \( 1 + (1.38 + 4.27i)T + (-5.66 + 4.11i)T^{2} \) |
| 17 | \( 1 + (-0.419 + 0.304i)T + (5.25 - 16.1i)T^{2} \) |
| 19 | \( 1 + (-0.949 + 2.92i)T + (-15.3 - 11.1i)T^{2} \) |
| 23 | \( 1 - 1.35T + 23T^{2} \) |
| 29 | \( 1 + (2.80 + 8.62i)T + (-23.4 + 17.0i)T^{2} \) |
| 31 | \( 1 + (-3.14 - 2.28i)T + (9.57 + 29.4i)T^{2} \) |
| 37 | \( 1 + (2.43 + 7.48i)T + (-29.9 + 21.7i)T^{2} \) |
| 41 | \( 1 + (-1.29 + 3.99i)T + (-33.1 - 24.0i)T^{2} \) |
| 43 | \( 1 - 1.55T + 43T^{2} \) |
| 47 | \( 1 + (-2.67 + 8.24i)T + (-38.0 - 27.6i)T^{2} \) |
| 53 | \( 1 + (2.09 + 1.52i)T + (16.3 + 50.4i)T^{2} \) |
| 59 | \( 1 + (-1.47 - 4.53i)T + (-47.7 + 34.6i)T^{2} \) |
| 61 | \( 1 + (-0.382 + 0.278i)T + (18.8 - 58.0i)T^{2} \) |
| 67 | \( 1 - 3.47T + 67T^{2} \) |
| 71 | \( 1 + (-8.32 + 6.04i)T + (21.9 - 67.5i)T^{2} \) |
| 73 | \( 1 + (-4.22 - 12.9i)T + (-59.0 + 42.9i)T^{2} \) |
| 79 | \( 1 + (-6.99 - 5.07i)T + (24.4 + 75.1i)T^{2} \) |
| 83 | \( 1 + (10.8 - 7.89i)T + (25.6 - 78.9i)T^{2} \) |
| 89 | \( 1 - 4.60T + 89T^{2} \) |
| 97 | \( 1 + (-6.24 - 4.53i)T + (29.9 + 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.37468369628951310981128576536, −11.42682164497102785518893933957, −10.49171401937668022210730436366, −9.528967891300946247387166831907, −8.112941877878762087060842128813, −7.30918221841157260436257155911, −7.03965526489754879142571225104, −3.69691786535373805531035122282, −2.35228997020105688140429067093, −0.63025568280400490288560303560,
3.27755278432318505455080852010, 5.05128469553371245017049264501, 6.12767708085502080928498978063, 7.974973161934717004672730745143, 8.701082959220608132198754221656, 9.205358550911575853458216381035, 10.10595058354544781972479362816, 11.28282916334120114913377212146, 12.50975475327035751166409590370, 14.39405569245540970324433308189