Properties

Label 2-1425-5.4-c1-0-48
Degree $2$
Conductor $1425$
Sign $-0.894 - 0.447i$
Analytic cond. $11.3786$
Root an. cond. $3.37323$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  i·2-s i·3-s + 4-s − 6-s − 2i·7-s − 3i·8-s − 9-s − 6·11-s i·12-s − 2·14-s − 16-s − 6i·17-s + i·18-s − 19-s − 2·21-s + 6i·22-s + ⋯
L(s)  = 1  − 0.707i·2-s − 0.577i·3-s + 0.5·4-s − 0.408·6-s − 0.755i·7-s − 1.06i·8-s − 0.333·9-s − 1.80·11-s − 0.288i·12-s − 0.534·14-s − 0.250·16-s − 1.45i·17-s + 0.235i·18-s − 0.229·19-s − 0.436·21-s + 1.27i·22-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1425 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.894 - 0.447i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1425 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.894 - 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1425\)    =    \(3 \cdot 5^{2} \cdot 19\)
Sign: $-0.894 - 0.447i$
Analytic conductor: \(11.3786\)
Root analytic conductor: \(3.37323\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1425} (799, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1425,\ (\ :1/2),\ -0.894 - 0.447i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.130785517\)
\(L(\frac12)\) \(\approx\) \(1.130785517\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + iT \)
5 \( 1 \)
19 \( 1 + T \)
good2 \( 1 + iT - 2T^{2} \)
7 \( 1 + 2iT - 7T^{2} \)
11 \( 1 + 6T + 11T^{2} \)
13 \( 1 - 13T^{2} \)
17 \( 1 + 6iT - 17T^{2} \)
23 \( 1 - 8iT - 23T^{2} \)
29 \( 1 + 4T + 29T^{2} \)
31 \( 1 + 31T^{2} \)
37 \( 1 - 4iT - 37T^{2} \)
41 \( 1 + 41T^{2} \)
43 \( 1 - 2iT - 43T^{2} \)
47 \( 1 + 8iT - 47T^{2} \)
53 \( 1 + 2iT - 53T^{2} \)
59 \( 1 + 12T + 59T^{2} \)
61 \( 1 - 2T + 61T^{2} \)
67 \( 1 + 8iT - 67T^{2} \)
71 \( 1 - 16T + 71T^{2} \)
73 \( 1 + 14iT - 73T^{2} \)
79 \( 1 + 8T + 79T^{2} \)
83 \( 1 - 83T^{2} \)
89 \( 1 + 89T^{2} \)
97 \( 1 + 12iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.351471951766441361473361864459, −7.982338082391660254885536409864, −7.46515482458678458890735538015, −6.89114476296741186754401743500, −5.73321900409454189265297261868, −4.88347127068724331216009089231, −3.51153831935527777392753469217, −2.75537441579377559796921450211, −1.75986914925693654187063371334, −0.40487527694469688881034360798, 2.17363756794423100136012347804, 2.84084566744910887499582391347, 4.25081530838063350370727613507, 5.32341880375655928565008582686, 5.79072266519328964800501616243, 6.63237319163602887396808023249, 7.75331431266845502753519158350, 8.267226605916544117749299181595, 8.947217501679964739528366579863, 10.15479965577495699832978911352

Graph of the $Z$-function along the critical line