| L(s) = 1 | + 2i·2-s + i·3-s − 2·4-s − 2·6-s − 3i·7-s − 9-s − 3·11-s − 2i·12-s − 6i·13-s + 6·14-s − 4·16-s − 3i·17-s − 2i·18-s + 19-s + 3·21-s − 6i·22-s + ⋯ |
| L(s) = 1 | + 1.41i·2-s + 0.577i·3-s − 4-s − 0.816·6-s − 1.13i·7-s − 0.333·9-s − 0.904·11-s − 0.577i·12-s − 1.66i·13-s + 1.60·14-s − 16-s − 0.727i·17-s − 0.471i·18-s + 0.229·19-s + 0.654·21-s − 1.27i·22-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1425 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.894 - 0.447i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1425 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.894 - 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.172221597\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.172221597\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 - iT \) |
| 5 | \( 1 \) |
| 19 | \( 1 - T \) |
| good | 2 | \( 1 - 2iT - 2T^{2} \) |
| 7 | \( 1 + 3iT - 7T^{2} \) |
| 11 | \( 1 + 3T + 11T^{2} \) |
| 13 | \( 1 + 6iT - 13T^{2} \) |
| 17 | \( 1 + 3iT - 17T^{2} \) |
| 23 | \( 1 - 4iT - 23T^{2} \) |
| 29 | \( 1 - 10T + 29T^{2} \) |
| 31 | \( 1 - 2T + 31T^{2} \) |
| 37 | \( 1 + 8iT - 37T^{2} \) |
| 41 | \( 1 + 8T + 41T^{2} \) |
| 43 | \( 1 + iT - 43T^{2} \) |
| 47 | \( 1 + 3iT - 47T^{2} \) |
| 53 | \( 1 + 6iT - 53T^{2} \) |
| 59 | \( 1 + 59T^{2} \) |
| 61 | \( 1 - 7T + 61T^{2} \) |
| 67 | \( 1 + 8iT - 67T^{2} \) |
| 71 | \( 1 - 12T + 71T^{2} \) |
| 73 | \( 1 + 11iT - 73T^{2} \) |
| 79 | \( 1 + 79T^{2} \) |
| 83 | \( 1 - 4iT - 83T^{2} \) |
| 89 | \( 1 + 10T + 89T^{2} \) |
| 97 | \( 1 - 2iT - 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.553240512455051031707120729526, −8.413485375742797488947741712961, −7.895039796887645290250375378974, −7.25763668625528371800089456448, −6.41132631298482396721134952554, −5.24343815268340728410668430519, −5.08502283869155177745756381612, −3.79289298194400367263352114465, −2.74057995576155640585456380826, −0.48931966499224851519103196978,
1.34040613954526925788070271617, 2.34276376856678799762804501951, 2.88511316222343802985598495284, 4.21043114247154090773042122830, 5.08104433948292964566501808952, 6.30936337969802613601645509902, 6.88077912288907619054416324409, 8.321889040916067813821460774990, 8.684263139001281529221516510586, 9.693398029951034370896689740256