L(s) = 1 | + 3·2-s + 3·3-s + 4-s + 9·6-s − 32·7-s − 21·8-s + 9·9-s − 12·11-s + 3·12-s + 10·13-s − 96·14-s − 71·16-s + 30·17-s + 27·18-s + 19·19-s − 96·21-s − 36·22-s + 48·23-s − 63·24-s + 30·26-s + 27·27-s − 32·28-s + 150·29-s + 224·31-s − 45·32-s − 36·33-s + 90·34-s + ⋯ |
L(s) = 1 | + 1.06·2-s + 0.577·3-s + 1/8·4-s + 0.612·6-s − 1.72·7-s − 0.928·8-s + 1/3·9-s − 0.328·11-s + 0.0721·12-s + 0.213·13-s − 1.83·14-s − 1.10·16-s + 0.428·17-s + 0.353·18-s + 0.229·19-s − 0.997·21-s − 0.348·22-s + 0.435·23-s − 0.535·24-s + 0.226·26-s + 0.192·27-s − 0.215·28-s + 0.960·29-s + 1.29·31-s − 0.248·32-s − 0.189·33-s + 0.453·34-s + ⋯ |
Λ(s)=(=(1425s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(1425s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
2.896913082 |
L(21) |
≈ |
2.896913082 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1−pT |
| 5 | 1 |
| 19 | 1−pT |
good | 2 | 1−3T+p3T2 |
| 7 | 1+32T+p3T2 |
| 11 | 1+12T+p3T2 |
| 13 | 1−10T+p3T2 |
| 17 | 1−30T+p3T2 |
| 23 | 1−48T+p3T2 |
| 29 | 1−150T+p3T2 |
| 31 | 1−224T+p3T2 |
| 37 | 1+254T+p3T2 |
| 41 | 1+54T+p3T2 |
| 43 | 1−196T+p3T2 |
| 47 | 1−504T+p3T2 |
| 53 | 1+78T+p3T2 |
| 59 | 1−132T+p3T2 |
| 61 | 1−230T+p3T2 |
| 67 | 1+740T+p3T2 |
| 71 | 1+120T+p3T2 |
| 73 | 1+122T+p3T2 |
| 79 | 1−1184T+p3T2 |
| 83 | 1+612T+p3T2 |
| 89 | 1−1050T+p3T2 |
| 97 | 1−1006T+p3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.162400884711309089220915521174, −8.541042836419073513659124953867, −7.34875045895627760340977891363, −6.51313367719853467537336415887, −5.87619891811380768738933573538, −4.88154620560068261153022660998, −3.88991730760092177420279424584, −3.18378966244891502821089664892, −2.58629430980809380231631523352, −0.67522657057216800636212640141,
0.67522657057216800636212640141, 2.58629430980809380231631523352, 3.18378966244891502821089664892, 3.88991730760092177420279424584, 4.88154620560068261153022660998, 5.87619891811380768738933573538, 6.51313367719853467537336415887, 7.34875045895627760340977891363, 8.541042836419073513659124953867, 9.162400884711309089220915521174