L(s) = 1 | − 5-s − 2·13-s − 6·17-s − 4·23-s + 25-s − 2·29-s − 8·31-s − 6·37-s − 6·41-s + 12·43-s + 12·47-s − 10·53-s + 8·59-s − 10·61-s + 2·65-s − 12·67-s + 8·71-s − 10·73-s − 16·79-s + 12·83-s + 6·85-s − 6·89-s − 18·97-s + 101-s + 103-s + 107-s + 109-s + ⋯ |
L(s) = 1 | − 0.447·5-s − 0.554·13-s − 1.45·17-s − 0.834·23-s + 1/5·25-s − 0.371·29-s − 1.43·31-s − 0.986·37-s − 0.937·41-s + 1.82·43-s + 1.75·47-s − 1.37·53-s + 1.04·59-s − 1.28·61-s + 0.248·65-s − 1.46·67-s + 0.949·71-s − 1.17·73-s − 1.80·79-s + 1.31·83-s + 0.650·85-s − 0.635·89-s − 1.82·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 141120 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 141120 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + T \) |
| 7 | \( 1 \) |
good | 11 | \( 1 + p T^{2} \) |
| 13 | \( 1 + 2 T + p T^{2} \) |
| 17 | \( 1 + 6 T + p T^{2} \) |
| 19 | \( 1 + p T^{2} \) |
| 23 | \( 1 + 4 T + p T^{2} \) |
| 29 | \( 1 + 2 T + p T^{2} \) |
| 31 | \( 1 + 8 T + p T^{2} \) |
| 37 | \( 1 + 6 T + p T^{2} \) |
| 41 | \( 1 + 6 T + p T^{2} \) |
| 43 | \( 1 - 12 T + p T^{2} \) |
| 47 | \( 1 - 12 T + p T^{2} \) |
| 53 | \( 1 + 10 T + p T^{2} \) |
| 59 | \( 1 - 8 T + p T^{2} \) |
| 61 | \( 1 + 10 T + p T^{2} \) |
| 67 | \( 1 + 12 T + p T^{2} \) |
| 71 | \( 1 - 8 T + p T^{2} \) |
| 73 | \( 1 + 10 T + p T^{2} \) |
| 79 | \( 1 + 16 T + p T^{2} \) |
| 83 | \( 1 - 12 T + p T^{2} \) |
| 89 | \( 1 + 6 T + p T^{2} \) |
| 97 | \( 1 + 18 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.71849192375269, −13.59060769838086, −12.74416093710340, −12.48298819696000, −12.05589018589424, −11.42187863514536, −11.03368111527733, −10.58030796940082, −10.14837038231726, −9.341316449737114, −9.109305042278337, −8.610790505616752, −8.011768355793310, −7.402793341479377, −7.153951728115012, −6.564681148904209, −5.873913385961777, −5.496818501168185, −4.772063891093019, −4.242921249752439, −3.892861676446197, −3.150865415880944, −2.481385876052743, −1.968476546531995, −1.264100128159062, 0, 0,
1.264100128159062, 1.968476546531995, 2.481385876052743, 3.150865415880944, 3.892861676446197, 4.242921249752439, 4.772063891093019, 5.496818501168185, 5.873913385961777, 6.564681148904209, 7.153951728115012, 7.402793341479377, 8.011768355793310, 8.610790505616752, 9.109305042278337, 9.341316449737114, 10.14837038231726, 10.58030796940082, 11.03368111527733, 11.42187863514536, 12.05589018589424, 12.48298819696000, 12.74416093710340, 13.59060769838086, 13.71849192375269