Properties

Label 2-1400-7.4-c1-0-35
Degree $2$
Conductor $1400$
Sign $-0.991 + 0.126i$
Analytic cond. $11.1790$
Root an. cond. $3.34350$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (1.5 − 2.59i)3-s + (−2 + 1.73i)7-s + (−3 − 5.19i)9-s + (0.5 − 0.866i)11-s − 2·13-s + (1.5 − 2.59i)17-s + (−2.5 − 4.33i)19-s + (1.5 + 7.79i)21-s + (−1.5 − 2.59i)23-s − 9·27-s − 6·29-s + (0.5 − 0.866i)31-s + (−1.5 − 2.59i)33-s + (−2.5 − 4.33i)37-s + (−3 + 5.19i)39-s + ⋯
L(s)  = 1  + (0.866 − 1.49i)3-s + (−0.755 + 0.654i)7-s + (−1 − 1.73i)9-s + (0.150 − 0.261i)11-s − 0.554·13-s + (0.363 − 0.630i)17-s + (−0.573 − 0.993i)19-s + (0.327 + 1.70i)21-s + (−0.312 − 0.541i)23-s − 1.73·27-s − 1.11·29-s + (0.0898 − 0.155i)31-s + (−0.261 − 0.452i)33-s + (−0.410 − 0.711i)37-s + (−0.480 + 0.832i)39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.991 + 0.126i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.991 + 0.126i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1400\)    =    \(2^{3} \cdot 5^{2} \cdot 7\)
Sign: $-0.991 + 0.126i$
Analytic conductor: \(11.1790\)
Root analytic conductor: \(3.34350\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1400} (1201, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1400,\ (\ :1/2),\ -0.991 + 0.126i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.314273617\)
\(L(\frac12)\) \(\approx\) \(1.314273617\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
7 \( 1 + (2 - 1.73i)T \)
good3 \( 1 + (-1.5 + 2.59i)T + (-1.5 - 2.59i)T^{2} \)
11 \( 1 + (-0.5 + 0.866i)T + (-5.5 - 9.52i)T^{2} \)
13 \( 1 + 2T + 13T^{2} \)
17 \( 1 + (-1.5 + 2.59i)T + (-8.5 - 14.7i)T^{2} \)
19 \( 1 + (2.5 + 4.33i)T + (-9.5 + 16.4i)T^{2} \)
23 \( 1 + (1.5 + 2.59i)T + (-11.5 + 19.9i)T^{2} \)
29 \( 1 + 6T + 29T^{2} \)
31 \( 1 + (-0.5 + 0.866i)T + (-15.5 - 26.8i)T^{2} \)
37 \( 1 + (2.5 + 4.33i)T + (-18.5 + 32.0i)T^{2} \)
41 \( 1 + 10T + 41T^{2} \)
43 \( 1 - 4T + 43T^{2} \)
47 \( 1 + (-0.5 - 0.866i)T + (-23.5 + 40.7i)T^{2} \)
53 \( 1 + (4.5 - 7.79i)T + (-26.5 - 45.8i)T^{2} \)
59 \( 1 + (1.5 - 2.59i)T + (-29.5 - 51.0i)T^{2} \)
61 \( 1 + (1.5 + 2.59i)T + (-30.5 + 52.8i)T^{2} \)
67 \( 1 + (-5.5 + 9.52i)T + (-33.5 - 58.0i)T^{2} \)
71 \( 1 - 16T + 71T^{2} \)
73 \( 1 + (-3.5 + 6.06i)T + (-36.5 - 63.2i)T^{2} \)
79 \( 1 + (-5.5 - 9.52i)T + (-39.5 + 68.4i)T^{2} \)
83 \( 1 - 4T + 83T^{2} \)
89 \( 1 + (-4.5 - 7.79i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 + 6T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.116127967281315344394440667656, −8.314955947288639081695278425182, −7.53918369702528869890902434783, −6.79667888119964279304563455634, −6.21638233515775495439081897598, −5.14011500336487292009151597330, −3.60525821180646879202693484188, −2.70338721237779144279009942853, −2.01147723082133800464218375439, −0.43985898638767071116077523231, 2.01271593918107366333146534594, 3.38982081492977341361608835567, 3.74285229862067030346367920367, 4.67334725040166923800437325202, 5.62109851521756496915958159966, 6.73143181364307256976399491170, 7.77954381182709700534669919593, 8.452417284738415844048676469056, 9.384173760551883886338485093543, 9.951557107883136220901478614631

Graph of the $Z$-function along the critical line