Properties

Label 2-1400-56.13-c0-0-2
Degree $2$
Conductor $1400$
Sign $1$
Analytic cond. $0.698691$
Root an. cond. $0.835877$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 1.41·3-s + 4-s + 1.41·6-s + 7-s − 8-s + 1.00·9-s − 1.41·12-s + 1.41·13-s − 14-s + 16-s − 1.00·18-s − 1.41·19-s − 1.41·21-s + 1.41·24-s − 1.41·26-s + 28-s − 32-s + 1.00·36-s + 1.41·38-s − 2.00·39-s + 1.41·42-s − 1.41·48-s + 49-s + 1.41·52-s − 56-s + 2.00·57-s + ⋯
L(s)  = 1  − 2-s − 1.41·3-s + 4-s + 1.41·6-s + 7-s − 8-s + 1.00·9-s − 1.41·12-s + 1.41·13-s − 14-s + 16-s − 1.00·18-s − 1.41·19-s − 1.41·21-s + 1.41·24-s − 1.41·26-s + 28-s − 32-s + 1.00·36-s + 1.41·38-s − 2.00·39-s + 1.41·42-s − 1.41·48-s + 49-s + 1.41·52-s − 56-s + 2.00·57-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1400\)    =    \(2^{3} \cdot 5^{2} \cdot 7\)
Sign: $1$
Analytic conductor: \(0.698691\)
Root analytic conductor: \(0.835877\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{1400} (1301, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1400,\ (\ :0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.4990776815\)
\(L(\frac12)\) \(\approx\) \(0.4990776815\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
5 \( 1 \)
7 \( 1 - T \)
good3 \( 1 + 1.41T + T^{2} \)
11 \( 1 - T^{2} \)
13 \( 1 - 1.41T + T^{2} \)
17 \( 1 - T^{2} \)
19 \( 1 + 1.41T + T^{2} \)
23 \( 1 + T^{2} \)
29 \( 1 - T^{2} \)
31 \( 1 - T^{2} \)
37 \( 1 - T^{2} \)
41 \( 1 - T^{2} \)
43 \( 1 - T^{2} \)
47 \( 1 - T^{2} \)
53 \( 1 - T^{2} \)
59 \( 1 - 1.41T + T^{2} \)
61 \( 1 - 1.41T + T^{2} \)
67 \( 1 - T^{2} \)
71 \( 1 + T^{2} \)
73 \( 1 - T^{2} \)
79 \( 1 + T^{2} \)
83 \( 1 - 1.41T + T^{2} \)
89 \( 1 - T^{2} \)
97 \( 1 - T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.00145615138226631232542030836, −8.724630634173229318593966903615, −8.375555927139315546491184104959, −7.29874567383983547375946247741, −6.41993972291292251686613973530, −5.89255768538943068111472731722, −4.95822600815069049158835218240, −3.82044374204711435348358272558, −2.11881067759400590285768240661, −0.979259789588622952788754477622, 0.979259789588622952788754477622, 2.11881067759400590285768240661, 3.82044374204711435348358272558, 4.95822600815069049158835218240, 5.89255768538943068111472731722, 6.41993972291292251686613973530, 7.29874567383983547375946247741, 8.375555927139315546491184104959, 8.724630634173229318593966903615, 10.00145615138226631232542030836

Graph of the $Z$-function along the critical line