Properties

Label 2-1400-35.27-c1-0-17
Degree $2$
Conductor $1400$
Sign $0.999 - 0.0175i$
Analytic cond. $11.1790$
Root an. cond. $3.34350$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.0703 + 0.0703i)3-s + (2.58 + 0.562i)7-s − 2.99i·9-s + 0.777·11-s + (3.93 + 3.93i)13-s + (−0.982 + 0.982i)17-s − 1.14·19-s + (0.142 + 0.221i)21-s + (1.46 − 1.46i)23-s + (0.421 − 0.421i)27-s − 4.69i·29-s + 6.45i·31-s + (0.0546 + 0.0546i)33-s + (1.30 + 1.30i)37-s + 0.553i·39-s + ⋯
L(s)  = 1  + (0.0405 + 0.0405i)3-s + (0.977 + 0.212i)7-s − 0.996i·9-s + 0.234·11-s + (1.09 + 1.09i)13-s + (−0.238 + 0.238i)17-s − 0.263·19-s + (0.0310 + 0.0482i)21-s + (0.304 − 0.304i)23-s + (0.0810 − 0.0810i)27-s − 0.870i·29-s + 1.15i·31-s + (0.00951 + 0.00951i)33-s + (0.214 + 0.214i)37-s + 0.0886i·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 - 0.0175i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.999 - 0.0175i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1400\)    =    \(2^{3} \cdot 5^{2} \cdot 7\)
Sign: $0.999 - 0.0175i$
Analytic conductor: \(11.1790\)
Root analytic conductor: \(3.34350\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1400} (657, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1400,\ (\ :1/2),\ 0.999 - 0.0175i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.029830920\)
\(L(\frac12)\) \(\approx\) \(2.029830920\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
7 \( 1 + (-2.58 - 0.562i)T \)
good3 \( 1 + (-0.0703 - 0.0703i)T + 3iT^{2} \)
11 \( 1 - 0.777T + 11T^{2} \)
13 \( 1 + (-3.93 - 3.93i)T + 13iT^{2} \)
17 \( 1 + (0.982 - 0.982i)T - 17iT^{2} \)
19 \( 1 + 1.14T + 19T^{2} \)
23 \( 1 + (-1.46 + 1.46i)T - 23iT^{2} \)
29 \( 1 + 4.69iT - 29T^{2} \)
31 \( 1 - 6.45iT - 31T^{2} \)
37 \( 1 + (-1.30 - 1.30i)T + 37iT^{2} \)
41 \( 1 + 9.81iT - 41T^{2} \)
43 \( 1 + (-7.13 + 7.13i)T - 43iT^{2} \)
47 \( 1 + (7.34 - 7.34i)T - 47iT^{2} \)
53 \( 1 + (-2.08 + 2.08i)T - 53iT^{2} \)
59 \( 1 - 8.29T + 59T^{2} \)
61 \( 1 - 5.88iT - 61T^{2} \)
67 \( 1 + (-6.30 - 6.30i)T + 67iT^{2} \)
71 \( 1 - 12.3T + 71T^{2} \)
73 \( 1 + (7.23 + 7.23i)T + 73iT^{2} \)
79 \( 1 + 2.83iT - 79T^{2} \)
83 \( 1 + (-10.4 - 10.4i)T + 83iT^{2} \)
89 \( 1 - 3.41T + 89T^{2} \)
97 \( 1 + (8.50 - 8.50i)T - 97iT^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.298649525767639753079430038088, −8.828787134381232266248602253887, −8.153794762331315034273488986154, −6.98113366724158378750189187328, −6.37168452157795137350115703054, −5.43611024278793245892554506089, −4.30905182283915505299166110855, −3.70735233990491745549623118359, −2.24850627452409251558829559683, −1.12285881331533927197122699009, 1.11593685342319647898426613216, 2.28007193903222604874151815823, 3.50166838839367520191052865347, 4.58526191901567218335499111603, 5.30951716829122263462725150732, 6.20276314232438561430539157517, 7.31778030721775806583831302406, 8.065770111199815858013217093637, 8.487179055306210350665760924307, 9.583164142496929373136210810057

Graph of the $Z$-function along the critical line