Properties

Label 2-1400-35.13-c1-0-0
Degree $2$
Conductor $1400$
Sign $-0.915 + 0.402i$
Analytic cond. $11.1790$
Root an. cond. $3.34350$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.409 + 0.409i)3-s + (0.738 + 2.54i)7-s + 2.66i·9-s − 3.54·11-s + (−2.95 + 2.95i)13-s + (−5.59 − 5.59i)17-s + 3.59·19-s + (−1.34 − 0.737i)21-s + (−0.0472 − 0.0472i)23-s + (−2.31 − 2.31i)27-s − 5.34i·29-s − 10.3i·31-s + (1.45 − 1.45i)33-s + (−7.80 + 7.80i)37-s − 2.41i·39-s + ⋯
L(s)  = 1  + (−0.236 + 0.236i)3-s + (0.278 + 0.960i)7-s + 0.888i·9-s − 1.07·11-s + (−0.818 + 0.818i)13-s + (−1.35 − 1.35i)17-s + 0.824·19-s + (−0.292 − 0.160i)21-s + (−0.00986 − 0.00986i)23-s + (−0.446 − 0.446i)27-s − 0.993i·29-s − 1.86i·31-s + (0.252 − 0.252i)33-s + (−1.28 + 1.28i)37-s − 0.386i·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.915 + 0.402i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.915 + 0.402i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1400\)    =    \(2^{3} \cdot 5^{2} \cdot 7\)
Sign: $-0.915 + 0.402i$
Analytic conductor: \(11.1790\)
Root analytic conductor: \(3.34350\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1400} (993, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1400,\ (\ :1/2),\ -0.915 + 0.402i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.2217868650\)
\(L(\frac12)\) \(\approx\) \(0.2217868650\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
7 \( 1 + (-0.738 - 2.54i)T \)
good3 \( 1 + (0.409 - 0.409i)T - 3iT^{2} \)
11 \( 1 + 3.54T + 11T^{2} \)
13 \( 1 + (2.95 - 2.95i)T - 13iT^{2} \)
17 \( 1 + (5.59 + 5.59i)T + 17iT^{2} \)
19 \( 1 - 3.59T + 19T^{2} \)
23 \( 1 + (0.0472 + 0.0472i)T + 23iT^{2} \)
29 \( 1 + 5.34iT - 29T^{2} \)
31 \( 1 + 10.3iT - 31T^{2} \)
37 \( 1 + (7.80 - 7.80i)T - 37iT^{2} \)
41 \( 1 + 5.63iT - 41T^{2} \)
43 \( 1 + (-6.93 - 6.93i)T + 43iT^{2} \)
47 \( 1 + (3.44 + 3.44i)T + 47iT^{2} \)
53 \( 1 + (0.646 + 0.646i)T + 53iT^{2} \)
59 \( 1 - 9.22T + 59T^{2} \)
61 \( 1 + 3.51iT - 61T^{2} \)
67 \( 1 + (-1.70 + 1.70i)T - 67iT^{2} \)
71 \( 1 + 8.54T + 71T^{2} \)
73 \( 1 + (2.43 - 2.43i)T - 73iT^{2} \)
79 \( 1 - 5.72iT - 79T^{2} \)
83 \( 1 + (2.04 - 2.04i)T - 83iT^{2} \)
89 \( 1 + 8.18T + 89T^{2} \)
97 \( 1 + (6.23 + 6.23i)T + 97iT^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.832331924195459011251569967401, −9.390148028419538772379016240769, −8.361270678850634738806628473095, −7.65825807814069354170286798000, −6.83106217698654193649666400361, −5.64200936289053196855353169881, −5.03185507760697807029079125297, −4.37804939646396601493788084241, −2.63725977781755023276932359284, −2.20174439261894660208248078753, 0.087999694707906043070170666112, 1.49954679558364279101131053492, 2.94535392817943356239820289035, 3.90573292633960391293201444051, 4.96372717008901228444160826056, 5.72235728558090388758014382616, 6.89663652975613813596452945803, 7.29040065002347414614437634459, 8.285400115331816323456182057671, 9.022365290791404722842436986072

Graph of the $Z$-function along the critical line