L(s) = 1 | + (−0.951 − 0.309i)2-s + (1.16 − 1.59i)3-s + (0.809 + 0.587i)4-s + (−0.453 − 0.891i)5-s + (−1.59 + 1.16i)6-s + i·7-s + (−0.587 − 0.809i)8-s + (−0.896 − 2.76i)9-s + (0.156 + 0.987i)10-s + (1.87 − 0.610i)12-s + (0.297 − 0.0966i)13-s + (0.309 − 0.951i)14-s + (−1.95 − 0.309i)15-s + (0.309 + 0.951i)16-s + 2.90i·18-s + (1.14 − 0.831i)19-s + ⋯ |
L(s) = 1 | + (−0.951 − 0.309i)2-s + (1.16 − 1.59i)3-s + (0.809 + 0.587i)4-s + (−0.453 − 0.891i)5-s + (−1.59 + 1.16i)6-s + i·7-s + (−0.587 − 0.809i)8-s + (−0.896 − 2.76i)9-s + (0.156 + 0.987i)10-s + (1.87 − 0.610i)12-s + (0.297 − 0.0966i)13-s + (0.309 − 0.951i)14-s + (−1.95 − 0.309i)15-s + (0.309 + 0.951i)16-s + 2.90i·18-s + (1.14 − 0.831i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.844 + 0.535i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.844 + 0.535i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9241792692\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9241792692\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.951 + 0.309i)T \) |
| 5 | \( 1 + (0.453 + 0.891i)T \) |
| 7 | \( 1 - iT \) |
good | 3 | \( 1 + (-1.16 + 1.59i)T + (-0.309 - 0.951i)T^{2} \) |
| 11 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 13 | \( 1 + (-0.297 + 0.0966i)T + (0.809 - 0.587i)T^{2} \) |
| 17 | \( 1 + (0.309 - 0.951i)T^{2} \) |
| 19 | \( 1 + (-1.14 + 0.831i)T + (0.309 - 0.951i)T^{2} \) |
| 23 | \( 1 + (1.11 + 0.363i)T + (0.809 + 0.587i)T^{2} \) |
| 29 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 31 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 37 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 41 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 53 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 59 | \( 1 + (-0.550 - 1.69i)T + (-0.809 + 0.587i)T^{2} \) |
| 61 | \( 1 + (-0.280 + 0.863i)T + (-0.809 - 0.587i)T^{2} \) |
| 67 | \( 1 + (0.309 - 0.951i)T^{2} \) |
| 71 | \( 1 + (-1.53 - 1.11i)T + (0.309 + 0.951i)T^{2} \) |
| 73 | \( 1 + (-0.809 - 0.587i)T^{2} \) |
| 79 | \( 1 + (-0.951 - 0.690i)T + (0.309 + 0.951i)T^{2} \) |
| 83 | \( 1 + (-0.533 - 0.734i)T + (-0.309 + 0.951i)T^{2} \) |
| 89 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 97 | \( 1 + (0.309 + 0.951i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.203268257094642702509002289201, −8.449563560782696372849036387462, −8.120943540111550813296868279445, −7.34761262173409223039013108306, −6.53408984110519467438104289185, −5.58076585976131731478494739108, −3.78681556139099661091099261421, −2.82190809120925124773434100798, −1.99529831607470987842968213744, −0.928049194437025365814701901397,
2.08441212485587964019482867358, 3.32336815792343199554044098938, 3.77163447310694315362410557847, 4.94057670645329080470428110930, 6.09079865289407421331301500256, 7.32403840139635459071982454002, 7.86112413571080517292845007682, 8.423926589139704856385230186150, 9.556661750366486258243893492541, 9.881019413582762190340790844164