L(s) = 1 | + (0.366 − 1.36i)2-s − 1.73·3-s + (−1.73 − i)4-s − i·5-s + (−0.633 + 2.36i)6-s + (−1.73 − 2i)7-s + (−2 + 1.99i)8-s + (−1.36 − 0.366i)10-s − 0.267i·11-s + (2.99 + 1.73i)12-s − 0.464i·13-s + (−3.36 + 1.63i)14-s + 1.73i·15-s + (1.99 + 3.46i)16-s − 6.46i·17-s + ⋯ |
L(s) = 1 | + (0.258 − 0.965i)2-s − 1.00·3-s + (−0.866 − 0.5i)4-s − 0.447i·5-s + (−0.258 + 0.965i)6-s + (−0.654 − 0.755i)7-s + (−0.707 + 0.707i)8-s + (−0.431 − 0.115i)10-s − 0.0807i·11-s + (0.866 + 0.499i)12-s − 0.128i·13-s + (−0.899 + 0.436i)14-s + 0.447i·15-s + (0.499 + 0.866i)16-s − 1.56i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 140 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.981 + 0.188i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 140 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.981 + 0.188i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0589062 - 0.617788i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0589062 - 0.617788i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.366 + 1.36i)T \) |
| 5 | \( 1 + iT \) |
| 7 | \( 1 + (1.73 + 2i)T \) |
good | 3 | \( 1 + 1.73T + 3T^{2} \) |
| 11 | \( 1 + 0.267iT - 11T^{2} \) |
| 13 | \( 1 + 0.464iT - 13T^{2} \) |
| 17 | \( 1 + 6.46iT - 17T^{2} \) |
| 19 | \( 1 - 6T + 19T^{2} \) |
| 23 | \( 1 + 1.46iT - 23T^{2} \) |
| 29 | \( 1 - 7.92T + 29T^{2} \) |
| 31 | \( 1 + 6T + 31T^{2} \) |
| 37 | \( 1 + 9.46T + 37T^{2} \) |
| 41 | \( 1 + 3.46iT - 41T^{2} \) |
| 43 | \( 1 + 2iT - 43T^{2} \) |
| 47 | \( 1 - 1.73T + 47T^{2} \) |
| 53 | \( 1 - 2T + 53T^{2} \) |
| 59 | \( 1 + 3.46T + 59T^{2} \) |
| 61 | \( 1 - 9.46iT - 61T^{2} \) |
| 67 | \( 1 - 3.46iT - 67T^{2} \) |
| 71 | \( 1 + 7.46iT - 71T^{2} \) |
| 73 | \( 1 - 12.9iT - 73T^{2} \) |
| 79 | \( 1 + 14.6iT - 79T^{2} \) |
| 83 | \( 1 - 15.4T + 83T^{2} \) |
| 89 | \( 1 - 2.53iT - 89T^{2} \) |
| 97 | \( 1 + 13.3iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.35286703727573479094863423883, −11.79678084710694179259016051729, −10.77788176836264166678661290052, −9.917001754986770221064083038267, −8.868877961939504159867187409771, −7.11378647964160262014460832949, −5.65956700888107471052541921644, −4.75297579295402906626388701752, −3.17950822102262844129885461979, −0.66756306154638102591564443936,
3.39919770862336868549693868751, 5.16220767501999316703122289698, 6.02985952146808533006216944611, 6.81842044350380925908750047663, 8.228199031050160078963874641245, 9.404360551564499699705224351273, 10.58583817224558325641605871202, 11.91930144487131302115575156422, 12.52931094571205585742381997523, 13.72871571461879644589810260012