# Properties

 Label 2-14-7.2-c13-0-5 Degree $2$ Conductor $14$ Sign $0.448 + 0.893i$ Analytic cond. $15.0123$ Root an. cond. $3.87457$ Motivic weight $13$ Arithmetic yes Rational no Primitive yes Self-dual no Analytic rank $0$

# Learn more

## Dirichlet series

 L(s)  = 1 + (32 − 55.4i)2-s + (194. + 336. i)3-s + (−2.04e3 − 3.54e3i)4-s + (−1.29e4 + 2.24e4i)5-s + 2.48e4·6-s + (2.86e5 − 1.21e5i)7-s − 2.62e5·8-s + (7.21e5 − 1.24e6i)9-s + (8.28e5 + 1.43e6i)10-s + (1.12e5 + 1.95e5i)11-s + (7.96e5 − 1.37e6i)12-s + 2.48e7·13-s + (2.42e6 − 1.97e7i)14-s − 1.00e7·15-s + (−8.38e6 + 1.45e7i)16-s + (−6.10e7 − 1.05e8i)17-s + ⋯
 L(s)  = 1 + (0.353 − 0.612i)2-s + (0.153 + 0.266i)3-s + (−0.249 − 0.433i)4-s + (−0.370 + 0.642i)5-s + 0.217·6-s + (0.920 − 0.390i)7-s − 0.353·8-s + (0.452 − 0.783i)9-s + (0.262 + 0.453i)10-s + (0.0191 + 0.0332i)11-s + (0.0769 − 0.133i)12-s + 1.42·13-s + (0.0861 − 0.701i)14-s − 0.228·15-s + (−0.125 + 0.216i)16-s + (−0.613 − 1.06i)17-s + ⋯

## Functional equation

\begin{aligned}\Lambda(s)=\mathstrut & 14 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.448 + 0.893i)\, \overline{\Lambda}(14-s) \end{aligned}
\begin{aligned}\Lambda(s)=\mathstrut & 14 ^{s/2} \, \Gamma_{\C}(s+13/2) \, L(s)\cr =\mathstrut & (0.448 + 0.893i)\, \overline{\Lambda}(1-s) \end{aligned}

## Invariants

 Degree: $$2$$ Conductor: $$14$$    =    $$2 \cdot 7$$ Sign: $0.448 + 0.893i$ Analytic conductor: $$15.0123$$ Root analytic conductor: $$3.87457$$ Motivic weight: $$13$$ Rational: no Arithmetic: yes Character: $\chi_{14} (9, \cdot )$ Primitive: yes Self-dual: no Analytic rank: $$0$$ Selberg data: $$(2,\ 14,\ (\ :13/2),\ 0.448 + 0.893i)$$

## Particular Values

 $$L(7)$$ $$\approx$$ $$2.06947 - 1.27729i$$ $$L(\frac12)$$ $$\approx$$ $$2.06947 - 1.27729i$$ $$L(\frac{15}{2})$$ not available $$L(1)$$ not available

## Euler product

$$L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}$$
$p$$F_p(T)$
bad2 $$1 + (-32 + 55.4i)T$$
7 $$1 + (-2.86e5 + 1.21e5i)T$$
good3 $$1 + (-194. - 336. i)T + (-7.97e5 + 1.38e6i)T^{2}$$
5 $$1 + (1.29e4 - 2.24e4i)T + (-6.10e8 - 1.05e9i)T^{2}$$
11 $$1 + (-1.12e5 - 1.95e5i)T + (-1.72e13 + 2.98e13i)T^{2}$$
13 $$1 - 2.48e7T + 3.02e14T^{2}$$
17 $$1 + (6.10e7 + 1.05e8i)T + (-4.95e15 + 8.57e15i)T^{2}$$
19 $$1 + (-1.07e8 + 1.85e8i)T + (-2.10e16 - 3.64e16i)T^{2}$$
23 $$1 + (-4.90e8 + 8.50e8i)T + (-2.52e17 - 4.36e17i)T^{2}$$
29 $$1 + 2.47e9T + 1.02e19T^{2}$$
31 $$1 + (-2.44e9 - 4.22e9i)T + (-1.22e19 + 2.11e19i)T^{2}$$
37 $$1 + (1.35e10 - 2.33e10i)T + (-1.21e20 - 2.10e20i)T^{2}$$
41 $$1 - 3.27e10T + 9.25e20T^{2}$$
43 $$1 + 5.78e9T + 1.71e21T^{2}$$
47 $$1 + (7.58e9 - 1.31e10i)T + (-2.73e21 - 4.72e21i)T^{2}$$
53 $$1 + (1.96e10 + 3.40e10i)T + (-1.30e22 + 2.25e22i)T^{2}$$
59 $$1 + (7.22e10 + 1.25e11i)T + (-5.24e22 + 9.09e22i)T^{2}$$
61 $$1 + (7.88e10 - 1.36e11i)T + (-8.09e22 - 1.40e23i)T^{2}$$
67 $$1 + (-3.83e11 - 6.64e11i)T + (-2.74e23 + 4.74e23i)T^{2}$$
71 $$1 + 1.73e12T + 1.16e24T^{2}$$
73 $$1 + (7.94e11 + 1.37e12i)T + (-8.35e23 + 1.44e24i)T^{2}$$
79 $$1 + (-1.43e11 + 2.47e11i)T + (-2.33e24 - 4.04e24i)T^{2}$$
83 $$1 + 9.41e10T + 8.87e24T^{2}$$
89 $$1 + (-1.97e12 + 3.42e12i)T + (-1.09e25 - 1.90e25i)T^{2}$$
97 $$1 + 1.04e13T + 6.73e25T^{2}$$
show more
show less
$$L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}$$

## Imaginary part of the first few zeros on the critical line

−15.75304208778156599185402469098, −14.65856472534802210394893386072, −13.39984075391755388116824227086, −11.59979965340693629342834122766, −10.68565914071146872393429725985, −8.913413082137581592243520079741, −6.87623821730908310521154746176, −4.60824578979732840832767291432, −3.16670027599768625710971812208, −1.03825390696610814602550554896, 1.54506551789164061948829893906, 4.12014752295418179011544794237, 5.65867954484030400555419836781, 7.71124983541916962398483364255, 8.693247588796120496000553062061, 11.11023730110394110834138892741, 12.69181882181899461931629559346, 13.82932453069745832583434299064, 15.32988010032230673071583762087, 16.37331418714476688910860234007