Properties

Label 2-14-1.1-c9-0-1
Degree $2$
Conductor $14$
Sign $1$
Analytic cond. $7.21050$
Root an. cond. $2.68523$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 16·2-s + 233.·3-s + 256·4-s − 356.·5-s − 3.72e3·6-s + 2.40e3·7-s − 4.09e3·8-s + 3.46e4·9-s + 5.70e3·10-s + 7.28e4·11-s + 5.96e4·12-s + 3.93e4·13-s − 3.84e4·14-s − 8.31e4·15-s + 6.55e4·16-s − 5.11e5·17-s − 5.54e5·18-s + 9.00e5·19-s − 9.13e4·20-s + 5.59e5·21-s − 1.16e6·22-s + 3.82e5·23-s − 9.54e5·24-s − 1.82e6·25-s − 6.29e5·26-s + 3.48e6·27-s + 6.14e5·28-s + ⋯
L(s)  = 1  − 0.707·2-s + 1.66·3-s + 0.5·4-s − 0.255·5-s − 1.17·6-s + 0.377·7-s − 0.353·8-s + 1.75·9-s + 0.180·10-s + 1.50·11-s + 0.830·12-s + 0.382·13-s − 0.267·14-s − 0.424·15-s + 0.250·16-s − 1.48·17-s − 1.24·18-s + 1.58·19-s − 0.127·20-s + 0.627·21-s − 1.06·22-s + 0.285·23-s − 0.587·24-s − 0.934·25-s − 0.270·26-s + 1.26·27-s + 0.188·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 14 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 14 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(14\)    =    \(2 \cdot 7\)
Sign: $1$
Analytic conductor: \(7.21050\)
Root analytic conductor: \(2.68523\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 14,\ (\ :9/2),\ 1)\)

Particular Values

\(L(5)\) \(\approx\) \(2.082099485\)
\(L(\frac12)\) \(\approx\) \(2.082099485\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 16T \)
7 \( 1 - 2.40e3T \)
good3 \( 1 - 233.T + 1.96e4T^{2} \)
5 \( 1 + 356.T + 1.95e6T^{2} \)
11 \( 1 - 7.28e4T + 2.35e9T^{2} \)
13 \( 1 - 3.93e4T + 1.06e10T^{2} \)
17 \( 1 + 5.11e5T + 1.18e11T^{2} \)
19 \( 1 - 9.00e5T + 3.22e11T^{2} \)
23 \( 1 - 3.82e5T + 1.80e12T^{2} \)
29 \( 1 + 4.73e6T + 1.45e13T^{2} \)
31 \( 1 + 7.93e5T + 2.64e13T^{2} \)
37 \( 1 + 1.72e7T + 1.29e14T^{2} \)
41 \( 1 + 1.53e7T + 3.27e14T^{2} \)
43 \( 1 - 1.87e7T + 5.02e14T^{2} \)
47 \( 1 + 4.68e7T + 1.11e15T^{2} \)
53 \( 1 - 2.06e7T + 3.29e15T^{2} \)
59 \( 1 + 1.30e7T + 8.66e15T^{2} \)
61 \( 1 - 1.55e8T + 1.16e16T^{2} \)
67 \( 1 - 2.45e8T + 2.72e16T^{2} \)
71 \( 1 + 3.87e8T + 4.58e16T^{2} \)
73 \( 1 + 3.12e8T + 5.88e16T^{2} \)
79 \( 1 - 2.41e8T + 1.19e17T^{2} \)
83 \( 1 - 2.00e8T + 1.86e17T^{2} \)
89 \( 1 - 7.00e7T + 3.50e17T^{2} \)
97 \( 1 - 6.69e8T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−17.64358468950992880118329828692, −15.86334017545217412238557025563, −14.73286225778781967915854415218, −13.57753063940629120551869376986, −11.53283941259280985314340398088, −9.483992854131210120570944803065, −8.589346429552756975371994559532, −7.16854073133309675418502732780, −3.66154901038404841063752912294, −1.72061557408656683350454753851, 1.72061557408656683350454753851, 3.66154901038404841063752912294, 7.16854073133309675418502732780, 8.589346429552756975371994559532, 9.483992854131210120570944803065, 11.53283941259280985314340398088, 13.57753063940629120551869376986, 14.73286225778781967915854415218, 15.86334017545217412238557025563, 17.64358468950992880118329828692

Graph of the $Z$-function along the critical line