L(s) = 1 | + (−1.98 + 0.404i)2-s + (−0.359 − 0.0584i)3-s + (1.92 − 0.819i)4-s + (0.199 + 0.809i)5-s + (0.735 − 0.0296i)6-s + (0.512 + 0.243i)7-s + (−0.149 + 0.102i)8-s + (−2.71 − 0.908i)9-s + (−0.722 − 1.52i)10-s + (1.27 + 3.83i)11-s + (−0.738 + 0.182i)12-s + (2.71 + 2.37i)13-s + (−1.11 − 0.274i)14-s + (−0.0244 − 0.302i)15-s + (−2.64 + 2.74i)16-s + (−3.39 + 7.15i)17-s + ⋯ |
L(s) = 1 | + (−1.40 + 0.286i)2-s + (−0.207 − 0.0337i)3-s + (0.961 − 0.409i)4-s + (0.0892 + 0.362i)5-s + (0.300 − 0.0121i)6-s + (0.193 + 0.0919i)7-s + (−0.0527 + 0.0363i)8-s + (−0.906 − 0.302i)9-s + (−0.228 − 0.481i)10-s + (0.385 + 1.15i)11-s + (−0.213 + 0.0525i)12-s + (0.753 + 0.657i)13-s + (−0.297 − 0.0734i)14-s + (−0.00630 − 0.0781i)15-s + (−0.660 + 0.687i)16-s + (−0.822 + 1.73i)17-s + ⋯ |
Λ(s)=(=(169s/2ΓC(s)L(s)(−0.0987−0.995i)Λ(2−s)
Λ(s)=(=(169s/2ΓC(s+1/2)L(s)(−0.0987−0.995i)Λ(1−s)
Degree: |
2 |
Conductor: |
169
= 132
|
Sign: |
−0.0987−0.995i
|
Analytic conductor: |
1.34947 |
Root analytic conductor: |
1.16166 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ169(17,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 169, ( :1/2), −0.0987−0.995i)
|
Particular Values
L(1) |
≈ |
0.319075+0.352290i |
L(21) |
≈ |
0.319075+0.352290i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 13 | 1+(−2.71−2.37i)T |
good | 2 | 1+(1.98−0.404i)T+(1.83−0.783i)T2 |
| 3 | 1+(0.359+0.0584i)T+(2.84+0.950i)T2 |
| 5 | 1+(−0.199−0.809i)T+(−4.42+2.32i)T2 |
| 7 | 1+(−0.512−0.243i)T+(4.42+5.42i)T2 |
| 11 | 1+(−1.27−3.83i)T+(−8.79+6.60i)T2 |
| 17 | 1+(3.39−7.15i)T+(−10.7−13.1i)T2 |
| 19 | 1+(−1.11+0.646i)T+(9.5−16.4i)T2 |
| 23 | 1+(3.79−6.57i)T+(−11.5−19.9i)T2 |
| 29 | 1+(0.254+1.24i)T+(−26.6+11.3i)T2 |
| 31 | 1+(−1.29+2.46i)T+(−17.6−25.5i)T2 |
| 37 | 1+(−0.238−0.377i)T+(−15.8+33.4i)T2 |
| 41 | 1+(−0.704+4.33i)T+(−38.8−12.9i)T2 |
| 43 | 1+(−6.85−4.33i)T+(18.4+38.8i)T2 |
| 47 | 1+(−2.97+0.361i)T+(45.6−11.2i)T2 |
| 53 | 1+(4.71+6.83i)T+(−18.7+49.5i)T2 |
| 59 | 1+(−3.83+3.68i)T+(2.37−58.9i)T2 |
| 61 | 1+(6.56+0.529i)T+(60.2+9.78i)T2 |
| 67 | 1+(3.93−9.23i)T+(−46.4−48.3i)T2 |
| 71 | 1+(−10.8−8.81i)T+(14.2+69.5i)T2 |
| 73 | 1+(3.93−4.44i)T+(−8.79−72.4i)T2 |
| 79 | 1+(0.977+8.04i)T+(−76.7+18.9i)T2 |
| 83 | 1+(−5.62−2.13i)T+(62.1+55.0i)T2 |
| 89 | 1+(6.62+3.82i)T+(44.5+77.0i)T2 |
| 97 | 1+(−9.36+2.71i)T+(81.9−51.8i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.94912418187831044532137792900, −11.64878133612749930462367555836, −10.89377200767181369633523038199, −9.854761557608086393888896230694, −8.949551861463315254533998368212, −8.123024254627270289630916223944, −6.89962567596070211368179464955, −6.05028327354641079305105277076, −4.09622380000040505136747343512, −1.83031685246236075381973938398,
0.74216460973868753811302896239, 2.80671790630805568059989674683, 4.93214955910595350653913733995, 6.27722255396141827102257626034, 7.77101942651967379196368176479, 8.681785279800322952354124049196, 9.208976689419296337828785379780, 10.70157006076968059354669534841, 11.08121287135571253950049463177, 12.09640687828717514944093107484