L(s) = 1 | + (1.99 − 0.0804i)2-s + (−0.751 − 2.59i)3-s + (1.98 − 0.160i)4-s + (1.41 − 0.534i)5-s + (−1.70 − 5.11i)6-s + (−1.63 + 3.84i)7-s + (−0.0203 + 0.00246i)8-s + (−3.62 + 2.29i)9-s + (2.77 − 1.18i)10-s + (3.00 − 4.75i)11-s + (−1.90 − 5.02i)12-s + (−0.967 + 3.47i)13-s + (−2.95 + 7.80i)14-s + (−2.44 − 3.25i)15-s + (−3.96 + 0.644i)16-s + (6.45 + 2.74i)17-s + ⋯ |
L(s) = 1 | + (1.41 − 0.0568i)2-s + (−0.433 − 1.49i)3-s + (0.991 − 0.0800i)4-s + (0.630 − 0.239i)5-s + (−0.697 − 2.08i)6-s + (−0.619 + 1.45i)7-s + (−0.00719 + 0.000873i)8-s + (−1.20 + 0.765i)9-s + (0.876 − 0.373i)10-s + (0.907 − 1.43i)11-s + (−0.550 − 1.45i)12-s + (−0.268 + 0.963i)13-s + (−0.791 + 2.08i)14-s + (−0.631 − 0.840i)15-s + (−0.992 + 0.161i)16-s + (1.56 + 0.666i)17-s + ⋯ |
Λ(s)=(=(169s/2ΓC(s)L(s)(0.469+0.882i)Λ(2−s)
Λ(s)=(=(169s/2ΓC(s+1/2)L(s)(0.469+0.882i)Λ(1−s)
Degree: |
2 |
Conductor: |
169
= 132
|
Sign: |
0.469+0.882i
|
Analytic conductor: |
1.34947 |
Root analytic conductor: |
1.16166 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ169(127,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 169, ( :1/2), 0.469+0.882i)
|
Particular Values
L(1) |
≈ |
1.71236−1.02901i |
L(21) |
≈ |
1.71236−1.02901i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 13 | 1+(0.967−3.47i)T |
good | 2 | 1+(−1.99+0.0804i)T+(1.99−0.160i)T2 |
| 3 | 1+(0.751+2.59i)T+(−2.53+1.60i)T2 |
| 5 | 1+(−1.41+0.534i)T+(3.74−3.31i)T2 |
| 7 | 1+(1.63−3.84i)T+(−4.84−5.04i)T2 |
| 11 | 1+(−3.00+4.75i)T+(−4.71−9.93i)T2 |
| 17 | 1+(−6.45−2.74i)T+(11.7+12.2i)T2 |
| 19 | 1+(1.84+1.06i)T+(9.5+16.4i)T2 |
| 23 | 1+(−0.789−1.36i)T+(−11.5+19.9i)T2 |
| 29 | 1+(0.179+4.46i)T+(−28.9+2.33i)T2 |
| 31 | 1+(2.69−3.04i)T+(−3.73−30.7i)T2 |
| 37 | 1+(−3.77−0.771i)T+(34.0+14.5i)T2 |
| 41 | 1+(4.49−1.30i)T+(34.6−21.9i)T2 |
| 43 | 1+(0.625+3.06i)T+(−39.5+16.8i)T2 |
| 47 | 1+(6.46+4.46i)T+(16.6+43.9i)T2 |
| 53 | 1+(0.932+7.68i)T+(−51.4+12.6i)T2 |
| 59 | 1+(0.475−2.92i)T+(−55.9−18.6i)T2 |
| 61 | 1+(−2.12−1.59i)T+(16.9+58.5i)T2 |
| 67 | 1+(−0.307+3.81i)T+(−66.1−10.7i)T2 |
| 71 | 1+(0.130+0.125i)T+(2.85+70.9i)T2 |
| 73 | 1+(−3.18−6.06i)T+(−41.4+60.0i)T2 |
| 79 | 1+(−5.93+8.60i)T+(−28.0−73.8i)T2 |
| 83 | 1+(1.37+5.57i)T+(−73.4+38.5i)T2 |
| 89 | 1+(6.07−3.50i)T+(44.5−77.0i)T2 |
| 97 | 1+(7.22−5.89i)T+(19.4−95.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.72652660454853744500189203057, −11.89312962740772014836419901823, −11.55772349611556794897175467011, −9.429731256917724867044323322804, −8.426965496619208430276695974318, −6.66802836260685388606747661991, −6.00272546239387744855730302087, −5.47943548666149444024452923773, −3.37399602224962861708691158748, −1.92634983281216017801913512478,
3.28483792683942045924106736024, 4.17120325450993884921021969867, 5.04494784967222355613684942589, 6.14929801836633023127437344918, 7.28684957807178696359444977514, 9.679441812897431866515373034059, 9.890244414111634039605314220123, 10.91174770548741446243362060586, 12.18049988095950996930461552333, 12.99209356429649658438141146108