L(s) = 1 | + (−2.41 + 0.0974i)2-s + (−0.437 − 1.51i)3-s + (3.84 − 0.310i)4-s + (−2.71 + 1.03i)5-s + (1.20 + 3.60i)6-s + (−0.958 + 2.25i)7-s + (−4.46 + 0.541i)8-s + (0.446 − 0.282i)9-s + (6.47 − 2.75i)10-s + (0.842 − 1.33i)11-s + (−2.15 − 5.66i)12-s + (2.05 + 2.96i)13-s + (2.09 − 5.53i)14-s + (2.74 + 3.65i)15-s + (3.12 − 0.507i)16-s + (1.77 + 0.757i)17-s + ⋯ |
L(s) = 1 | + (−1.70 + 0.0689i)2-s + (−0.252 − 0.871i)3-s + (1.92 − 0.155i)4-s + (−1.21 + 0.460i)5-s + (0.491 + 1.47i)6-s + (−0.362 + 0.850i)7-s + (−1.57 + 0.191i)8-s + (0.148 − 0.0941i)9-s + (2.04 − 0.871i)10-s + (0.253 − 0.401i)11-s + (−0.620 − 1.63i)12-s + (0.570 + 0.821i)13-s + (0.561 − 1.47i)14-s + (0.708 + 0.943i)15-s + (0.780 − 0.126i)16-s + (0.431 + 0.183i)17-s + ⋯ |
Λ(s)=(=(169s/2ΓC(s)L(s)(0.781−0.624i)Λ(2−s)
Λ(s)=(=(169s/2ΓC(s+1/2)L(s)(0.781−0.624i)Λ(1−s)
Degree: |
2 |
Conductor: |
169
= 132
|
Sign: |
0.781−0.624i
|
Analytic conductor: |
1.34947 |
Root analytic conductor: |
1.16166 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ169(127,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 169, ( :1/2), 0.781−0.624i)
|
Particular Values
L(1) |
≈ |
0.349518+0.122549i |
L(21) |
≈ |
0.349518+0.122549i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 13 | 1+(−2.05−2.96i)T |
good | 2 | 1+(2.41−0.0974i)T+(1.99−0.160i)T2 |
| 3 | 1+(0.437+1.51i)T+(−2.53+1.60i)T2 |
| 5 | 1+(2.71−1.03i)T+(3.74−3.31i)T2 |
| 7 | 1+(0.958−2.25i)T+(−4.84−5.04i)T2 |
| 11 | 1+(−0.842+1.33i)T+(−4.71−9.93i)T2 |
| 17 | 1+(−1.77−0.757i)T+(11.7+12.2i)T2 |
| 19 | 1+(−6.36−3.67i)T+(9.5+16.4i)T2 |
| 23 | 1+(−2.38−4.13i)T+(−11.5+19.9i)T2 |
| 29 | 1+(−0.291−7.23i)T+(−28.9+2.33i)T2 |
| 31 | 1+(−3.48+3.93i)T+(−3.73−30.7i)T2 |
| 37 | 1+(9.28+1.89i)T+(34.0+14.5i)T2 |
| 41 | 1+(1.54−0.447i)T+(34.6−21.9i)T2 |
| 43 | 1+(−0.644−3.15i)T+(−39.5+16.8i)T2 |
| 47 | 1+(0.644+0.444i)T+(16.6+43.9i)T2 |
| 53 | 1+(−1.39−11.4i)T+(−51.4+12.6i)T2 |
| 59 | 1+(0.344−2.12i)T+(−55.9−18.6i)T2 |
| 61 | 1+(7.39+5.55i)T+(16.9+58.5i)T2 |
| 67 | 1+(0.146−1.81i)T+(−66.1−10.7i)T2 |
| 71 | 1+(−8.24−7.91i)T+(2.85+70.9i)T2 |
| 73 | 1+(3.61+6.88i)T+(−41.4+60.0i)T2 |
| 79 | 1+(−3.01+4.36i)T+(−28.0−73.8i)T2 |
| 83 | 1+(−0.682−2.76i)T+(−73.4+38.5i)T2 |
| 89 | 1+(−10.7+6.18i)T+(44.5−77.0i)T2 |
| 97 | 1+(10.8−8.83i)T+(19.4−95.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.23940383048358006306537849463, −11.79073495293906981508603973367, −10.95126186009872705253737149509, −9.637842160647554949716617935933, −8.746063285415544060199633057213, −7.68816481187188807312820712944, −7.09011253873719660935358268936, −6.02771091501194485747648972905, −3.38543480092005756570974743923, −1.37423685818158815826927494890,
0.71490873714128110135936236676, 3.50354183801910220170761603926, 4.84924907516371549306694881196, 6.94549624060574498920724531652, 7.72621608912310840406925122175, 8.678407938003848293348835979369, 9.794646601151361824396057739277, 10.39667222856493729649801979041, 11.27622513998618652106785762210, 12.14221014066028751488585518539