Properties

Label 2-13e2-13.9-c3-0-30
Degree $2$
Conductor $169$
Sign $-0.945 - 0.326i$
Analytic cond. $9.97132$
Root an. cond. $3.15774$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.73 − 3i)2-s + (3.5 − 6.06i)3-s + (−2 − 3.46i)4-s − 13.8·5-s + (−12.1 − 21i)6-s + (−11.2 − 19.5i)7-s + 13.8·8-s + (−11 − 19.0i)9-s + (−23.9 + 41.5i)10-s + (−11.2 + 19.5i)11-s − 28.0·12-s − 78·14-s + (−48.4 + 84i)15-s + (39.9 − 69.2i)16-s + (13.5 + 23.3i)17-s − 76.2·18-s + ⋯
L(s)  = 1  + (0.612 − 1.06i)2-s + (0.673 − 1.16i)3-s + (−0.250 − 0.433i)4-s − 1.23·5-s + (−0.824 − 1.42i)6-s + (−0.607 − 1.05i)7-s + 0.612·8-s + (−0.407 − 0.705i)9-s + (−0.758 + 1.31i)10-s + (−0.308 + 0.534i)11-s − 0.673·12-s − 1.48·14-s + (−0.834 + 1.44i)15-s + (0.624 − 1.08i)16-s + (0.192 + 0.333i)17-s − 0.997·18-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.945 - 0.326i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.945 - 0.326i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(169\)    =    \(13^{2}\)
Sign: $-0.945 - 0.326i$
Analytic conductor: \(9.97132\)
Root analytic conductor: \(3.15774\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{169} (22, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 169,\ (\ :3/2),\ -0.945 - 0.326i)\)

Particular Values

\(L(2)\) \(\approx\) \(0.335163 + 1.99670i\)
\(L(\frac12)\) \(\approx\) \(0.335163 + 1.99670i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad13 \( 1 \)
good2 \( 1 + (-1.73 + 3i)T + (-4 - 6.92i)T^{2} \)
3 \( 1 + (-3.5 + 6.06i)T + (-13.5 - 23.3i)T^{2} \)
5 \( 1 + 13.8T + 125T^{2} \)
7 \( 1 + (11.2 + 19.5i)T + (-171.5 + 297. i)T^{2} \)
11 \( 1 + (11.2 - 19.5i)T + (-665.5 - 1.15e3i)T^{2} \)
17 \( 1 + (-13.5 - 23.3i)T + (-2.45e3 + 4.25e3i)T^{2} \)
19 \( 1 + (44.1 + 76.5i)T + (-3.42e3 + 5.94e3i)T^{2} \)
23 \( 1 + (-28.5 + 49.3i)T + (-6.08e3 - 1.05e4i)T^{2} \)
29 \( 1 + (-34.5 + 59.7i)T + (-1.21e4 - 2.11e4i)T^{2} \)
31 \( 1 - 72.7T + 2.97e4T^{2} \)
37 \( 1 + (19.9 - 34.5i)T + (-2.53e4 - 4.38e4i)T^{2} \)
41 \( 1 + (-196. + 340.5i)T + (-3.44e4 - 5.96e4i)T^{2} \)
43 \( 1 + (42.5 + 73.6i)T + (-3.97e4 + 6.88e4i)T^{2} \)
47 \( 1 + 342.T + 1.03e5T^{2} \)
53 \( 1 - 426T + 1.48e5T^{2} \)
59 \( 1 + (-9.52 - 16.5i)T + (-1.02e5 + 1.77e5i)T^{2} \)
61 \( 1 + (-8.5 - 14.7i)T + (-1.13e5 + 1.96e5i)T^{2} \)
67 \( 1 + (82.2 - 142.5i)T + (-1.50e5 - 2.60e5i)T^{2} \)
71 \( 1 + (-291. - 505.5i)T + (-1.78e5 + 3.09e5i)T^{2} \)
73 \( 1 - 1.00e3T + 3.89e5T^{2} \)
79 \( 1 + 1.24e3T + 4.93e5T^{2} \)
83 \( 1 - 426.T + 5.71e5T^{2} \)
89 \( 1 + (-153. + 265.5i)T + (-3.52e5 - 6.10e5i)T^{2} \)
97 \( 1 + (-617. - 1.06e3i)T + (-4.56e5 + 7.90e5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.06569434718210944740294938151, −11.04556752892983942830455106656, −10.12276725304448429124908136488, −8.418041462657932276202687146163, −7.47224532272548667089043245728, −6.89820921126313904293861866205, −4.50593432421718688574708695636, −3.55471853931236530034756333824, −2.36986999567970864789516699977, −0.71893077149200097815950516107, 3.12004335684016734339341771507, 4.10360630340555716848383515633, 5.21215179297313945104997192734, 6.38352627037604110932431769694, 7.81685575874874361855510550476, 8.546305185147663937398107420501, 9.677857687529950795393269751824, 10.80894277250198753617968164107, 11.98962217258746655753109634959, 13.08077271646546253250017404290

Graph of the $Z$-function along the critical line