L(s) = 1 | + (2.34 + 2.34i)2-s − 3·3-s + 7i·4-s + (−2.34 − 2.34i)5-s + (−7.03 − 7.03i)6-s + (−7.03 + 7.03i)7-s + (−7.03 + 7.03i)8-s − 11i·10-s + (−4.69 + 4.69i)11-s − 21i·12-s − 33·14-s + (7.03 + 7.03i)15-s − 5·16-s + 3i·17-s + (14.0 + 14.0i)19-s + (16.4 − 16.4i)20-s + ⋯ |
L(s) = 1 | + (1.17 + 1.17i)2-s − 3-s + 1.75i·4-s + (−0.469 − 0.469i)5-s + (−1.17 − 1.17i)6-s + (−1.00 + 1.00i)7-s + (−0.879 + 0.879i)8-s − 1.10i·10-s + (−0.426 + 0.426i)11-s − 1.75i·12-s − 2.35·14-s + (0.469 + 0.469i)15-s − 0.312·16-s + 0.176i·17-s + (0.740 + 0.740i)19-s + (0.820 − 0.820i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.957 + 0.289i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.957 + 0.289i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.154221 - 1.04155i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.154221 - 1.04155i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 13 | \( 1 \) |
good | 2 | \( 1 + (-2.34 - 2.34i)T + 4iT^{2} \) |
| 3 | \( 1 + 3T + 9T^{2} \) |
| 5 | \( 1 + (2.34 + 2.34i)T + 25iT^{2} \) |
| 7 | \( 1 + (7.03 - 7.03i)T - 49iT^{2} \) |
| 11 | \( 1 + (4.69 - 4.69i)T - 121iT^{2} \) |
| 17 | \( 1 - 3iT - 289T^{2} \) |
| 19 | \( 1 + (-14.0 - 14.0i)T + 361iT^{2} \) |
| 23 | \( 1 - 12iT - 529T^{2} \) |
| 29 | \( 1 + 42T + 841T^{2} \) |
| 31 | \( 1 + (-28.1 - 28.1i)T + 961iT^{2} \) |
| 37 | \( 1 + (35.1 - 35.1i)T - 1.36e3iT^{2} \) |
| 41 | \( 1 + (-32.8 - 32.8i)T + 1.68e3iT^{2} \) |
| 43 | \( 1 + 49iT - 1.84e3T^{2} \) |
| 47 | \( 1 + (-2.34 + 2.34i)T - 2.20e3iT^{2} \) |
| 53 | \( 1 + 24T + 2.80e3T^{2} \) |
| 59 | \( 1 + (37.5 - 37.5i)T - 3.48e3iT^{2} \) |
| 61 | \( 1 - 30T + 3.72e3T^{2} \) |
| 67 | \( 1 + (28.1 + 28.1i)T + 4.48e3iT^{2} \) |
| 71 | \( 1 + (16.4 + 16.4i)T + 5.04e3iT^{2} \) |
| 73 | \( 1 + (28.1 - 28.1i)T - 5.32e3iT^{2} \) |
| 79 | \( 1 - 54T + 6.24e3T^{2} \) |
| 83 | \( 1 + (32.8 + 32.8i)T + 6.88e3iT^{2} \) |
| 89 | \( 1 + (-117. + 117. i)T - 7.92e3iT^{2} \) |
| 97 | \( 1 + (-14.0 - 14.0i)T + 9.40e3iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.95919469391668371063399769581, −12.29089755777210887032231574552, −11.75621861672356443608747779517, −10.13345105194259595612582225049, −8.708148978305236828187232442431, −7.51891451909267780576667476718, −6.32901422867944884315413789571, −5.64795850130428998962826749704, −4.79416373267360741953969097080, −3.29982501017726773349076263126,
0.48741489902242836634800069835, 2.92801790437626255193970967463, 3.92066980835038460154751971117, 5.21341032749765676133468647104, 6.25983510352376037865786824071, 7.44521390189786916926397691729, 9.556270926480331721400202404721, 10.70067068988378687300326735610, 11.06994415721236317355348851382, 11.92279987710218643222001123195