L(s) = 1 | + (−0.694 − 0.400i)2-s + (1.12 − 1.94i)3-s + (−0.678 − 1.17i)4-s + 0.246i·5-s + (−1.56 + 0.900i)6-s + (2.04 − 1.17i)7-s + 2.69i·8-s + (−1.02 − 1.77i)9-s + (0.0990 − 0.171i)10-s + (−3.67 − 2.12i)11-s − 3.04·12-s − 1.89·14-s + (0.480 + 0.277i)15-s + (−0.277 + 0.480i)16-s + (1.07 + 1.86i)17-s + 1.64i·18-s + ⋯ |
L(s) = 1 | + (−0.491 − 0.283i)2-s + (0.648 − 1.12i)3-s + (−0.339 − 0.587i)4-s + 0.110i·5-s + (−0.637 + 0.367i)6-s + (0.771 − 0.445i)7-s + 0.951i·8-s + (−0.341 − 0.591i)9-s + (0.0313 − 0.0542i)10-s + (−1.10 − 0.640i)11-s − 0.880·12-s − 0.505·14-s + (0.124 + 0.0716i)15-s + (−0.0693 + 0.120i)16-s + (0.261 + 0.453i)17-s + 0.387i·18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.425 + 0.905i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.425 + 0.905i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.545818 - 0.859654i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.545818 - 0.859654i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 13 | \( 1 \) |
good | 2 | \( 1 + (0.694 + 0.400i)T + (1 + 1.73i)T^{2} \) |
| 3 | \( 1 + (-1.12 + 1.94i)T + (-1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 - 0.246iT - 5T^{2} \) |
| 7 | \( 1 + (-2.04 + 1.17i)T + (3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (3.67 + 2.12i)T + (5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (-1.07 - 1.86i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (0.0763 - 0.0440i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-0.746 + 1.29i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (2.31 - 4.01i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + 6.63iT - 31T^{2} \) |
| 37 | \( 1 + (-4.92 - 2.84i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-10.0 - 5.79i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (0.147 + 0.256i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 - 7.35iT - 47T^{2} \) |
| 53 | \( 1 + 10.3T + 53T^{2} \) |
| 59 | \( 1 + (-5.87 + 3.39i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (1.73 + 3.00i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (6.65 + 3.83i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (7.50 - 4.33i)T + (35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + 6.73iT - 73T^{2} \) |
| 79 | \( 1 - 9.97T + 79T^{2} \) |
| 83 | \( 1 - 1.60iT - 83T^{2} \) |
| 89 | \( 1 + (2.49 + 1.44i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (6.97 - 4.02i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.73460244218095652448515900584, −11.17035449771696440833282600054, −10.62800815033460750488606271854, −9.297590387297452233578553450199, −8.140649870694542806693601926026, −7.72922351196120073730191895364, −6.16698918106495844932933058100, −4.80587546309102196319333644310, −2.64709195197643084460540848858, −1.21451106900017660873886776078,
2.83908377806447979188323190513, 4.25962704848026034773377605972, 5.20329357367445745001922613946, 7.27673323383809519736967793268, 8.211297077858277505294375508018, 9.017310662846521310904093477500, 9.810214338901377848460215350114, 10.79966153109508107650676499502, 12.17338466995095057719303086865, 13.09966624080924495811494180456