Properties

Label 2-13e2-13.3-c3-0-25
Degree 22
Conductor 169169
Sign 0.872+0.488i-0.872 + 0.488i
Analytic cond. 9.971329.97132
Root an. cond. 3.157743.15774
Motivic weight 33
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.28 − 2.21i)2-s + (1.84 + 3.19i)3-s + (0.719 − 1.24i)4-s + 0.561·5-s + (4.71 − 8.17i)6-s + (−9.08 + 15.7i)7-s − 24.1·8-s + (6.71 − 11.6i)9-s + (−0.719 − 1.24i)10-s + (−32.3 − 56.0i)11-s + 5.30·12-s + 46.5·14-s + (1.03 + 1.79i)15-s + (25.2 + 43.6i)16-s + (12.7 − 22.1i)17-s − 34.3·18-s + ⋯
L(s)  = 1  + (−0.452 − 0.784i)2-s + (0.354 + 0.614i)3-s + (0.0899 − 0.155i)4-s + 0.0502·5-s + (0.321 − 0.556i)6-s + (−0.490 + 0.849i)7-s − 1.06·8-s + (0.248 − 0.430i)9-s + (−0.0227 − 0.0393i)10-s + (−0.887 − 1.53i)11-s + 0.127·12-s + 0.888·14-s + (0.0178 + 0.0308i)15-s + (0.393 + 0.682i)16-s + (0.182 − 0.315i)17-s − 0.450·18-s + ⋯

Functional equation

Λ(s)=(169s/2ΓC(s)L(s)=((0.872+0.488i)Λ(4s)\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.872 + 0.488i)\, \overline{\Lambda}(4-s) \end{aligned}
Λ(s)=(169s/2ΓC(s+3/2)L(s)=((0.872+0.488i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.872 + 0.488i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 169169    =    13213^{2}
Sign: 0.872+0.488i-0.872 + 0.488i
Analytic conductor: 9.971329.97132
Root analytic conductor: 3.157743.15774
Motivic weight: 33
Rational: no
Arithmetic: yes
Character: χ169(146,)\chi_{169} (146, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 169, ( :3/2), 0.872+0.488i)(2,\ 169,\ (\ :3/2),\ -0.872 + 0.488i)

Particular Values

L(2)L(2) \approx 0.2315290.886783i0.231529 - 0.886783i
L(12)L(\frac12) \approx 0.2315290.886783i0.231529 - 0.886783i
L(52)L(\frac{5}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad13 1 1
good2 1+(1.28+2.21i)T+(4+6.92i)T2 1 + (1.28 + 2.21i)T + (-4 + 6.92i)T^{2}
3 1+(1.843.19i)T+(13.5+23.3i)T2 1 + (-1.84 - 3.19i)T + (-13.5 + 23.3i)T^{2}
5 10.561T+125T2 1 - 0.561T + 125T^{2}
7 1+(9.0815.7i)T+(171.5297.i)T2 1 + (9.08 - 15.7i)T + (-171.5 - 297. i)T^{2}
11 1+(32.3+56.0i)T+(665.5+1.15e3i)T2 1 + (32.3 + 56.0i)T + (-665.5 + 1.15e3i)T^{2}
17 1+(12.7+22.1i)T+(2.45e34.25e3i)T2 1 + (-12.7 + 22.1i)T + (-2.45e3 - 4.25e3i)T^{2}
19 1+(53.9+93.5i)T+(3.42e35.94e3i)T2 1 + (-53.9 + 93.5i)T + (-3.42e3 - 5.94e3i)T^{2}
23 1+(36.6+63.4i)T+(6.08e3+1.05e4i)T2 1 + (36.6 + 63.4i)T + (-6.08e3 + 1.05e4i)T^{2}
29 1+(87.9+152.i)T+(1.21e4+2.11e4i)T2 1 + (87.9 + 152. i)T + (-1.21e4 + 2.11e4i)T^{2}
31 1+113.T+2.97e4T2 1 + 113.T + 2.97e4T^{2}
37 1+(57.4+99.4i)T+(2.53e4+4.38e4i)T2 1 + (57.4 + 99.4i)T + (-2.53e4 + 4.38e4i)T^{2}
41 1+(34.860.3i)T+(3.44e4+5.96e4i)T2 1 + (-34.8 - 60.3i)T + (-3.44e4 + 5.96e4i)T^{2}
43 1+(219.379.i)T+(3.97e46.88e4i)T2 1 + (219. - 379. i)T + (-3.97e4 - 6.88e4i)T^{2}
47 1+31.9T+1.03e5T2 1 + 31.9T + 1.03e5T^{2}
53 12.84T+1.48e5T2 1 - 2.84T + 1.48e5T^{2}
59 1+(35.862.0i)T+(1.02e51.77e5i)T2 1 + (35.8 - 62.0i)T + (-1.02e5 - 1.77e5i)T^{2}
61 1+(460.+797.i)T+(1.13e51.96e5i)T2 1 + (-460. + 797. i)T + (-1.13e5 - 1.96e5i)T^{2}
67 1+(222.384.i)T+(1.50e5+2.60e5i)T2 1 + (-222. - 384. i)T + (-1.50e5 + 2.60e5i)T^{2}
71 1+(270.+469.i)T+(1.78e53.09e5i)T2 1 + (-270. + 469. i)T + (-1.78e5 - 3.09e5i)T^{2}
73 1764.T+3.89e5T2 1 - 764.T + 3.89e5T^{2}
79 1+421.T+4.93e5T2 1 + 421.T + 4.93e5T^{2}
83 1603.T+5.71e5T2 1 - 603.T + 5.71e5T^{2}
89 1+(579.1.00e3i)T+(3.52e5+6.10e5i)T2 1 + (-579. - 1.00e3i)T + (-3.52e5 + 6.10e5i)T^{2}
97 1+(291.505.i)T+(4.56e57.90e5i)T2 1 + (291. - 505. i)T + (-4.56e5 - 7.90e5i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−11.61497385325112472318886278447, −10.88584368082938731139863261068, −9.724504376464827791275988995464, −9.270299142840876560129056485539, −8.208238680157439429258784355755, −6.37051195911218099393106461508, −5.39699266518487194503548511801, −3.44947885884092282924320216215, −2.54321628636650256424530971474, −0.44194807365249133003897886939, 1.95652601494146955328175586963, 3.65808196524719961611417011260, 5.44835332201661153865513189541, 6.99527308058620390429088172851, 7.42982581603841182947961645868, 8.195272314577383850875855156911, 9.671714918396222049874846998149, 10.40122851724185191646898306236, 12.05048192882306585109859818240, 12.80610647486775650638328882253

Graph of the ZZ-function along the critical line