| L(s) = 1 | + (2 + 3.46i)2-s + (−1 − 1.73i)3-s + (−3.99 + 6.92i)4-s − 17·5-s + (3.99 − 6.92i)6-s + (10 − 17.3i)7-s + (11.5 − 19.9i)9-s + (−34 − 58.8i)10-s + (−16 − 27.7i)11-s + 15.9·12-s + 80·14-s + (17 + 29.4i)15-s + (31.9 + 55.4i)16-s + (6.5 − 11.2i)17-s + 92·18-s + (15 − 25.9i)19-s + ⋯ |
| L(s) = 1 | + (0.707 + 1.22i)2-s + (−0.192 − 0.333i)3-s + (−0.499 + 0.866i)4-s − 1.52·5-s + (0.272 − 0.471i)6-s + (0.539 − 0.935i)7-s + (0.425 − 0.737i)9-s + (−1.07 − 1.86i)10-s + (−0.438 − 0.759i)11-s + 0.384·12-s + 1.52·14-s + (0.292 + 0.506i)15-s + (0.499 + 0.866i)16-s + (0.0927 − 0.160i)17-s + 1.20·18-s + (0.181 − 0.313i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.859 + 0.511i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.859 + 0.511i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(2)\) |
\(\approx\) |
\(1.49639 - 0.411260i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.49639 - 0.411260i\) |
| \(L(\frac{5}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 13 | \( 1 \) |
| good | 2 | \( 1 + (-2 - 3.46i)T + (-4 + 6.92i)T^{2} \) |
| 3 | \( 1 + (1 + 1.73i)T + (-13.5 + 23.3i)T^{2} \) |
| 5 | \( 1 + 17T + 125T^{2} \) |
| 7 | \( 1 + (-10 + 17.3i)T + (-171.5 - 297. i)T^{2} \) |
| 11 | \( 1 + (16 + 27.7i)T + (-665.5 + 1.15e3i)T^{2} \) |
| 17 | \( 1 + (-6.5 + 11.2i)T + (-2.45e3 - 4.25e3i)T^{2} \) |
| 19 | \( 1 + (-15 + 25.9i)T + (-3.42e3 - 5.94e3i)T^{2} \) |
| 23 | \( 1 + (39 + 67.5i)T + (-6.08e3 + 1.05e4i)T^{2} \) |
| 29 | \( 1 + (98.5 + 170. i)T + (-1.21e4 + 2.11e4i)T^{2} \) |
| 31 | \( 1 - 74T + 2.97e4T^{2} \) |
| 37 | \( 1 + (113.5 + 196. i)T + (-2.53e4 + 4.38e4i)T^{2} \) |
| 41 | \( 1 + (82.5 + 142. i)T + (-3.44e4 + 5.96e4i)T^{2} \) |
| 43 | \( 1 + (-78 + 135. i)T + (-3.97e4 - 6.88e4i)T^{2} \) |
| 47 | \( 1 - 162T + 1.03e5T^{2} \) |
| 53 | \( 1 - 93T + 1.48e5T^{2} \) |
| 59 | \( 1 + (432 - 748. i)T + (-1.02e5 - 1.77e5i)T^{2} \) |
| 61 | \( 1 + (72.5 - 125. i)T + (-1.13e5 - 1.96e5i)T^{2} \) |
| 67 | \( 1 + (-431 - 746. i)T + (-1.50e5 + 2.60e5i)T^{2} \) |
| 71 | \( 1 + (-327 + 566. i)T + (-1.78e5 - 3.09e5i)T^{2} \) |
| 73 | \( 1 + 215T + 3.89e5T^{2} \) |
| 79 | \( 1 + 76T + 4.93e5T^{2} \) |
| 83 | \( 1 + 628T + 5.71e5T^{2} \) |
| 89 | \( 1 + (133 + 230. i)T + (-3.52e5 + 6.10e5i)T^{2} \) |
| 97 | \( 1 + (-119 + 206. i)T + (-4.56e5 - 7.90e5i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.39176177549082977324248987549, −11.44693017992065744608299047222, −10.48045563606500048217952498876, −8.574564944770912953903147810920, −7.56976360833430144025817501044, −7.18058417806014843596355859254, −5.89460402004959842144283740489, −4.46567923090857713114237797257, −3.75138284507640079597406899050, −0.60756928641029764695474985099,
1.85515376064640039874511519575, 3.35636653765253081209316927232, 4.50277853019225456721620594290, 5.21329043516230545724610787366, 7.42467951987553773496092091748, 8.216002573546574347883330483928, 9.807876918805277224929245523997, 10.84851109072130531679148159636, 11.51825986183605080674148060342, 12.23327519901452037253715018860