Properties

Label 2-13e2-13.3-c1-0-2
Degree $2$
Conductor $169$
Sign $0.978 + 0.207i$
Analytic cond. $1.34947$
Root an. cond. $1.16166$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.400 − 0.694i)2-s + (1.12 + 1.94i)3-s + (0.678 − 1.17i)4-s + 0.246·5-s + (0.900 − 1.56i)6-s + (1.17 − 2.04i)7-s − 2.69·8-s + (−1.02 + 1.77i)9-s + (−0.0990 − 0.171i)10-s + (2.12 + 3.67i)11-s + 3.04·12-s − 1.89·14-s + (0.277 + 0.480i)15-s + (−0.277 − 0.480i)16-s + (−1.07 + 1.86i)17-s + 1.64·18-s + ⋯
L(s)  = 1  + (−0.283 − 0.491i)2-s + (0.648 + 1.12i)3-s + (0.339 − 0.587i)4-s + 0.110·5-s + (0.367 − 0.637i)6-s + (0.445 − 0.771i)7-s − 0.951·8-s + (−0.341 + 0.591i)9-s + (−0.0313 − 0.0542i)10-s + (0.640 + 1.10i)11-s + 0.880·12-s − 0.505·14-s + (0.0716 + 0.124i)15-s + (−0.0693 − 0.120i)16-s + (−0.261 + 0.453i)17-s + 0.387·18-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.978 + 0.207i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.978 + 0.207i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(169\)    =    \(13^{2}\)
Sign: $0.978 + 0.207i$
Analytic conductor: \(1.34947\)
Root analytic conductor: \(1.16166\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{169} (146, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 169,\ (\ :1/2),\ 0.978 + 0.207i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.32284 - 0.138673i\)
\(L(\frac12)\) \(\approx\) \(1.32284 - 0.138673i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad13 \( 1 \)
good2 \( 1 + (0.400 + 0.694i)T + (-1 + 1.73i)T^{2} \)
3 \( 1 + (-1.12 - 1.94i)T + (-1.5 + 2.59i)T^{2} \)
5 \( 1 - 0.246T + 5T^{2} \)
7 \( 1 + (-1.17 + 2.04i)T + (-3.5 - 6.06i)T^{2} \)
11 \( 1 + (-2.12 - 3.67i)T + (-5.5 + 9.52i)T^{2} \)
17 \( 1 + (1.07 - 1.86i)T + (-8.5 - 14.7i)T^{2} \)
19 \( 1 + (-0.0440 + 0.0763i)T + (-9.5 - 16.4i)T^{2} \)
23 \( 1 + (0.746 + 1.29i)T + (-11.5 + 19.9i)T^{2} \)
29 \( 1 + (2.31 + 4.01i)T + (-14.5 + 25.1i)T^{2} \)
31 \( 1 + 6.63T + 31T^{2} \)
37 \( 1 + (2.84 + 4.92i)T + (-18.5 + 32.0i)T^{2} \)
41 \( 1 + (-5.79 - 10.0i)T + (-20.5 + 35.5i)T^{2} \)
43 \( 1 + (-0.147 + 0.256i)T + (-21.5 - 37.2i)T^{2} \)
47 \( 1 + 7.35T + 47T^{2} \)
53 \( 1 + 10.3T + 53T^{2} \)
59 \( 1 + (-3.39 + 5.87i)T + (-29.5 - 51.0i)T^{2} \)
61 \( 1 + (1.73 - 3.00i)T + (-30.5 - 52.8i)T^{2} \)
67 \( 1 + (3.83 + 6.65i)T + (-33.5 + 58.0i)T^{2} \)
71 \( 1 + (-4.33 + 7.50i)T + (-35.5 - 61.4i)T^{2} \)
73 \( 1 - 6.73T + 73T^{2} \)
79 \( 1 - 9.97T + 79T^{2} \)
83 \( 1 - 1.60T + 83T^{2} \)
89 \( 1 + (-1.44 - 2.49i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 + (-4.02 + 6.97i)T + (-48.5 - 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.61874394606007137537726973140, −11.37380838180154788326437431905, −10.59155196244628245608927553637, −9.713932374186595133810085011337, −9.235577118862531665770926662706, −7.74972249820632445027461222683, −6.35887132005009761752043214444, −4.74425255097343803165234389124, −3.70093089774374010984788368137, −1.92326429849570522147302022287, 2.03022052234198399630783108219, 3.38547592000766681510887012689, 5.68057615919087888106374482128, 6.76071270683026384646641741446, 7.69465836312251477138952191050, 8.530444674402549552489123486370, 9.183746466242397319474105672378, 11.17412388686513396905697310258, 11.95763065702170905163680686384, 12.82128398735163484804635421268

Graph of the $Z$-function along the critical line