Properties

Label 2-13e2-13.12-c1-0-3
Degree 22
Conductor 169169
Sign 0.2770.960i0.277 - 0.960i
Analytic cond. 1.349471.34947
Root an. cond. 1.161661.16166
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.73i·2-s + 2·3-s − 0.999·4-s − 1.73i·5-s + 3.46i·6-s + 1.73i·8-s + 9-s + 2.99·10-s − 1.99·12-s − 3.46i·15-s − 5·16-s − 3·17-s + 1.73i·18-s − 3.46i·19-s + 1.73i·20-s + ⋯
L(s)  = 1  + 1.22i·2-s + 1.15·3-s − 0.499·4-s − 0.774i·5-s + 1.41i·6-s + 0.612i·8-s + 0.333·9-s + 0.948·10-s − 0.577·12-s − 0.894i·15-s − 1.25·16-s − 0.727·17-s + 0.408i·18-s − 0.794i·19-s + 0.387i·20-s + ⋯

Functional equation

Λ(s)=(169s/2ΓC(s)L(s)=((0.2770.960i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.277 - 0.960i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(169s/2ΓC(s+1/2)L(s)=((0.2770.960i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.277 - 0.960i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 169169    =    13213^{2}
Sign: 0.2770.960i0.277 - 0.960i
Analytic conductor: 1.349471.34947
Root analytic conductor: 1.161661.16166
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ169(168,)\chi_{169} (168, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 169, ( :1/2), 0.2770.960i)(2,\ 169,\ (\ :1/2),\ 0.277 - 0.960i)

Particular Values

L(1)L(1) \approx 1.26684+0.952866i1.26684 + 0.952866i
L(12)L(\frac12) \approx 1.26684+0.952866i1.26684 + 0.952866i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad13 1 1
good2 11.73iT2T2 1 - 1.73iT - 2T^{2}
3 12T+3T2 1 - 2T + 3T^{2}
5 1+1.73iT5T2 1 + 1.73iT - 5T^{2}
7 17T2 1 - 7T^{2}
11 111T2 1 - 11T^{2}
17 1+3T+17T2 1 + 3T + 17T^{2}
19 1+3.46iT19T2 1 + 3.46iT - 19T^{2}
23 1+6T+23T2 1 + 6T + 23T^{2}
29 13T+29T2 1 - 3T + 29T^{2}
31 13.46iT31T2 1 - 3.46iT - 31T^{2}
37 1+8.66iT37T2 1 + 8.66iT - 37T^{2}
41 15.19iT41T2 1 - 5.19iT - 41T^{2}
43 18T+43T2 1 - 8T + 43T^{2}
47 1+3.46iT47T2 1 + 3.46iT - 47T^{2}
53 1+3T+53T2 1 + 3T + 53T^{2}
59 16.92iT59T2 1 - 6.92iT - 59T^{2}
61 1T+61T2 1 - T + 61T^{2}
67 1+3.46iT67T2 1 + 3.46iT - 67T^{2}
71 13.46iT71T2 1 - 3.46iT - 71T^{2}
73 11.73iT73T2 1 - 1.73iT - 73T^{2}
79 14T+79T2 1 - 4T + 79T^{2}
83 113.8iT83T2 1 - 13.8iT - 83T^{2}
89 16.92iT89T2 1 - 6.92iT - 89T^{2}
97 16.92iT97T2 1 - 6.92iT - 97T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−13.44476425929559468346538491569, −12.26818101199900444750312981580, −10.94847564488489828881242774172, −9.332238110505233578204456023620, −8.673371113803740723619786588554, −7.939310022246744940027896702216, −6.86820121374391796497923239343, −5.57603028151523584184682147069, −4.30239335282076746516779963742, −2.44501112123847370636860148022, 2.10572921794485249831794009614, 3.06189891578492420096607173424, 4.11034874790725181817896976209, 6.30914840314477631398284782079, 7.58992859012226347336486584256, 8.735107569485189719239757586320, 9.780212139297250293402784529936, 10.56403233314047195907411460948, 11.52441054296548637032148096270, 12.48263861716559487451818949027

Graph of the ZZ-function along the critical line