L(s) = 1 | + 1.73i·2-s + 2·3-s − 0.999·4-s − 1.73i·5-s + 3.46i·6-s + 1.73i·8-s + 9-s + 2.99·10-s − 1.99·12-s − 3.46i·15-s − 5·16-s − 3·17-s + 1.73i·18-s − 3.46i·19-s + 1.73i·20-s + ⋯ |
L(s) = 1 | + 1.22i·2-s + 1.15·3-s − 0.499·4-s − 0.774i·5-s + 1.41i·6-s + 0.612i·8-s + 0.333·9-s + 0.948·10-s − 0.577·12-s − 0.894i·15-s − 1.25·16-s − 0.727·17-s + 0.408i·18-s − 0.794i·19-s + 0.387i·20-s + ⋯ |
Λ(s)=(=(169s/2ΓC(s)L(s)(0.277−0.960i)Λ(2−s)
Λ(s)=(=(169s/2ΓC(s+1/2)L(s)(0.277−0.960i)Λ(1−s)
Degree: |
2 |
Conductor: |
169
= 132
|
Sign: |
0.277−0.960i
|
Analytic conductor: |
1.34947 |
Root analytic conductor: |
1.16166 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ169(168,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 169, ( :1/2), 0.277−0.960i)
|
Particular Values
L(1) |
≈ |
1.26684+0.952866i |
L(21) |
≈ |
1.26684+0.952866i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 13 | 1 |
good | 2 | 1−1.73iT−2T2 |
| 3 | 1−2T+3T2 |
| 5 | 1+1.73iT−5T2 |
| 7 | 1−7T2 |
| 11 | 1−11T2 |
| 17 | 1+3T+17T2 |
| 19 | 1+3.46iT−19T2 |
| 23 | 1+6T+23T2 |
| 29 | 1−3T+29T2 |
| 31 | 1−3.46iT−31T2 |
| 37 | 1+8.66iT−37T2 |
| 41 | 1−5.19iT−41T2 |
| 43 | 1−8T+43T2 |
| 47 | 1+3.46iT−47T2 |
| 53 | 1+3T+53T2 |
| 59 | 1−6.92iT−59T2 |
| 61 | 1−T+61T2 |
| 67 | 1+3.46iT−67T2 |
| 71 | 1−3.46iT−71T2 |
| 73 | 1−1.73iT−73T2 |
| 79 | 1−4T+79T2 |
| 83 | 1−13.8iT−83T2 |
| 89 | 1−6.92iT−89T2 |
| 97 | 1−6.92iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.44476425929559468346538491569, −12.26818101199900444750312981580, −10.94847564488489828881242774172, −9.332238110505233578204456023620, −8.673371113803740723619786588554, −7.939310022246744940027896702216, −6.86820121374391796497923239343, −5.57603028151523584184682147069, −4.30239335282076746516779963742, −2.44501112123847370636860148022,
2.10572921794485249831794009614, 3.06189891578492420096607173424, 4.11034874790725181817896976209, 6.30914840314477631398284782079, 7.58992859012226347336486584256, 8.735107569485189719239757586320, 9.780212139297250293402784529936, 10.56403233314047195907411460948, 11.52441054296548637032148096270, 12.48263861716559487451818949027