L(s) = 1 | + 0.801i·2-s − 2.24·3-s + 1.35·4-s + 0.246i·5-s − 1.80i·6-s + 2.35i·7-s + 2.69i·8-s + 2.04·9-s − 0.198·10-s + 4.24i·11-s − 3.04·12-s − 1.89·14-s − 0.554i·15-s + 0.554·16-s − 2.15·17-s + 1.64i·18-s + ⋯ |
L(s) = 1 | + 0.567i·2-s − 1.29·3-s + 0.678·4-s + 0.110i·5-s − 0.735i·6-s + 0.890i·7-s + 0.951i·8-s + 0.682·9-s − 0.0626·10-s + 1.28i·11-s − 0.880·12-s − 0.505·14-s − 0.143i·15-s + 0.138·16-s − 0.523·17-s + 0.387i·18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.246 - 0.969i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.246 - 0.969i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.526260 + 0.677133i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.526260 + 0.677133i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 13 | \( 1 \) |
good | 2 | \( 1 - 0.801iT - 2T^{2} \) |
| 3 | \( 1 + 2.24T + 3T^{2} \) |
| 5 | \( 1 - 0.246iT - 5T^{2} \) |
| 7 | \( 1 - 2.35iT - 7T^{2} \) |
| 11 | \( 1 - 4.24iT - 11T^{2} \) |
| 17 | \( 1 + 2.15T + 17T^{2} \) |
| 19 | \( 1 + 0.0881iT - 19T^{2} \) |
| 23 | \( 1 + 1.49T + 23T^{2} \) |
| 29 | \( 1 - 4.63T + 29T^{2} \) |
| 31 | \( 1 + 6.63iT - 31T^{2} \) |
| 37 | \( 1 + 5.69iT - 37T^{2} \) |
| 41 | \( 1 + 11.5iT - 41T^{2} \) |
| 43 | \( 1 - 0.295T + 43T^{2} \) |
| 47 | \( 1 - 7.35iT - 47T^{2} \) |
| 53 | \( 1 + 10.3T + 53T^{2} \) |
| 59 | \( 1 - 6.78iT - 59T^{2} \) |
| 61 | \( 1 - 3.47T + 61T^{2} \) |
| 67 | \( 1 - 7.67iT - 67T^{2} \) |
| 71 | \( 1 + 8.66iT - 71T^{2} \) |
| 73 | \( 1 + 6.73iT - 73T^{2} \) |
| 79 | \( 1 - 9.97T + 79T^{2} \) |
| 83 | \( 1 - 1.60iT - 83T^{2} \) |
| 89 | \( 1 - 2.88iT - 89T^{2} \) |
| 97 | \( 1 + 8.05iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.60292939541458750400440328164, −12.07372140353207185586078077439, −11.19309343562318784894356375339, −10.35833148982552036260034672881, −8.960870351012221547408041379622, −7.53302451012761119921686975896, −6.56928182405638460721847415966, −5.76620790941156845177220617520, −4.74988371678695169251375514126, −2.31525938369508570616862188854,
0.972677609427910568972927347823, 3.23468304526772147905274936571, 4.81365681898570112082128468052, 6.21803460942848297855065815726, 6.85475543179598805055419457533, 8.364029985393972812836688473130, 10.03523391941710643807817071185, 10.84138419094814527551913166934, 11.31134897397206640333604955449, 12.20506584220473222317236584723