Properties

Label 2-13e2-1.1-c3-0-9
Degree $2$
Conductor $169$
Sign $-1$
Analytic cond. $9.97132$
Root an. cond. $3.15774$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.46·2-s − 7·3-s + 3.99·4-s − 13.8·5-s + 24.2·6-s + 22.5·7-s + 13.8·8-s + 22·9-s + 47.9·10-s + 22.5·11-s − 27.9·12-s − 77.9·14-s + 96.9·15-s − 80·16-s − 27·17-s − 76.2·18-s + 88.3·19-s − 55.4·20-s − 157.·21-s − 77.9·22-s − 57·23-s − 96.9·24-s + 66.9·25-s + 35·27-s + 90.0·28-s − 69·29-s − 336·30-s + ⋯
L(s)  = 1  − 1.22·2-s − 1.34·3-s + 0.499·4-s − 1.23·5-s + 1.64·6-s + 1.21·7-s + 0.612·8-s + 0.814·9-s + 1.51·10-s + 0.617·11-s − 0.673·12-s − 1.48·14-s + 1.66·15-s − 1.25·16-s − 0.385·17-s − 0.997·18-s + 1.06·19-s − 0.619·20-s − 1.63·21-s − 0.755·22-s − 0.516·23-s − 0.824·24-s + 0.535·25-s + 0.249·27-s + 0.607·28-s − 0.441·29-s − 2.04·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(169\)    =    \(13^{2}\)
Sign: $-1$
Analytic conductor: \(9.97132\)
Root analytic conductor: \(3.15774\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 169,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad13 \( 1 \)
good2 \( 1 + 3.46T + 8T^{2} \)
3 \( 1 + 7T + 27T^{2} \)
5 \( 1 + 13.8T + 125T^{2} \)
7 \( 1 - 22.5T + 343T^{2} \)
11 \( 1 - 22.5T + 1.33e3T^{2} \)
17 \( 1 + 27T + 4.91e3T^{2} \)
19 \( 1 - 88.3T + 6.85e3T^{2} \)
23 \( 1 + 57T + 1.21e4T^{2} \)
29 \( 1 + 69T + 2.43e4T^{2} \)
31 \( 1 - 72.7T + 2.97e4T^{2} \)
37 \( 1 - 39.8T + 5.06e4T^{2} \)
41 \( 1 + 393.T + 6.89e4T^{2} \)
43 \( 1 - 85T + 7.95e4T^{2} \)
47 \( 1 + 342.T + 1.03e5T^{2} \)
53 \( 1 - 426T + 1.48e5T^{2} \)
59 \( 1 + 19.0T + 2.05e5T^{2} \)
61 \( 1 + 17T + 2.26e5T^{2} \)
67 \( 1 - 164.T + 3.00e5T^{2} \)
71 \( 1 + 583.T + 3.57e5T^{2} \)
73 \( 1 - 1.00e3T + 3.89e5T^{2} \)
79 \( 1 + 1.24e3T + 4.93e5T^{2} \)
83 \( 1 - 426.T + 5.71e5T^{2} \)
89 \( 1 + 306.T + 7.04e5T^{2} \)
97 \( 1 + 1.23e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.48217719835871621332339167537, −11.06294483507506560520482804712, −9.921891229696085597481046122789, −8.581143343426175824590953335122, −7.80199539476799250738132440759, −6.83753034594576023534015011970, −5.20560348401395186663010199590, −4.19252532384516695831971535487, −1.29137390609072600850336473452, 0, 1.29137390609072600850336473452, 4.19252532384516695831971535487, 5.20560348401395186663010199590, 6.83753034594576023534015011970, 7.80199539476799250738132440759, 8.581143343426175824590953335122, 9.921891229696085597481046122789, 11.06294483507506560520482804712, 11.48217719835871621332339167537

Graph of the $Z$-function along the critical line