L(s) = 1 | + (−0.5 − 0.866i)2-s + (−0.499 + 0.866i)4-s + (1.32 + 2.29i)5-s + (−1.32 − 2.29i)7-s + 0.999·8-s + (1.32 − 2.29i)10-s + (0.5 − 0.866i)11-s − 4·13-s + (−1.32 + 2.29i)14-s + (−0.5 − 0.866i)16-s + (−1.5 + 2.59i)17-s + (−2.64 − 4.58i)19-s − 2.64·20-s − 0.999·22-s + (−1.32 − 2.29i)23-s + ⋯ |
L(s) = 1 | + (−0.353 − 0.612i)2-s + (−0.249 + 0.433i)4-s + (0.591 + 1.02i)5-s + (−0.499 − 0.866i)7-s + 0.353·8-s + (0.418 − 0.724i)10-s + (0.150 − 0.261i)11-s − 1.10·13-s + (−0.353 + 0.612i)14-s + (−0.125 − 0.216i)16-s + (−0.363 + 0.630i)17-s + (−0.606 − 1.05i)19-s − 0.591·20-s − 0.213·22-s + (−0.275 − 0.477i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1386 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.895 + 0.444i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1386 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.895 + 0.444i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.5862501362\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5862501362\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.5 + 0.866i)T \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (1.32 + 2.29i)T \) |
| 11 | \( 1 + (-0.5 + 0.866i)T \) |
good | 5 | \( 1 + (-1.32 - 2.29i)T + (-2.5 + 4.33i)T^{2} \) |
| 13 | \( 1 + 4T + 13T^{2} \) |
| 17 | \( 1 + (1.5 - 2.59i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (2.64 + 4.58i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (1.32 + 2.29i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + 2T + 29T^{2} \) |
| 31 | \( 1 + (-2 + 3.46i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (0.645 + 1.11i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + 9T + 41T^{2} \) |
| 43 | \( 1 - 9.29T + 43T^{2} \) |
| 47 | \( 1 + (1.96 + 3.40i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-2 + 3.46i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-3.29 + 5.70i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (5.96 + 10.3i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (3.79 - 6.56i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 2.70T + 71T^{2} \) |
| 73 | \( 1 + (-7.64 + 13.2i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (5.32 + 9.21i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 15.5T + 83T^{2} \) |
| 89 | \( 1 + (-1.35 - 2.34i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + 11.5T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.522463847436696028796787936609, −8.575320013378322844150373481011, −7.53486161170514014936327991057, −6.81101843823685156451680880946, −6.20242970705968244899210772821, −4.81087466797100669891703210818, −3.84829709146850535556966408238, −2.84697860584819490137141063289, −2.04053122196295298169164823317, −0.25638084967829566927432661547,
1.52262873704551230521069236759, 2.64278094051755680939890672805, 4.22533258581579847982253875111, 5.19049410625278915069062530675, 5.70107356161105100327641359652, 6.63440010928272616292494523236, 7.51499310595934183243767400542, 8.501210185984282141751056220491, 9.062084779598781591062718623988, 9.710266239183017629437242877660