Properties

Label 2-1386-7.2-c1-0-29
Degree $2$
Conductor $1386$
Sign $-0.968 + 0.250i$
Analytic cond. $11.0672$
Root an. cond. $3.32675$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.5 + 0.866i)2-s + (−0.499 − 0.866i)4-s + (−0.5 − 2.59i)7-s + 0.999·8-s + (−0.5 − 0.866i)11-s − 13-s + (2.5 + 0.866i)14-s + (−0.5 + 0.866i)16-s + (−3 − 5.19i)17-s + (−1 + 1.73i)19-s + 0.999·22-s + (−3 + 5.19i)23-s + (2.5 + 4.33i)25-s + (0.5 − 0.866i)26-s + (−2 + 1.73i)28-s − 9·29-s + ⋯
L(s)  = 1  + (−0.353 + 0.612i)2-s + (−0.249 − 0.433i)4-s + (−0.188 − 0.981i)7-s + 0.353·8-s + (−0.150 − 0.261i)11-s − 0.277·13-s + (0.668 + 0.231i)14-s + (−0.125 + 0.216i)16-s + (−0.727 − 1.26i)17-s + (−0.229 + 0.397i)19-s + 0.213·22-s + (−0.625 + 1.08i)23-s + (0.5 + 0.866i)25-s + (0.0980 − 0.169i)26-s + (−0.377 + 0.327i)28-s − 1.67·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1386 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.968 + 0.250i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1386 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.968 + 0.250i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1386\)    =    \(2 \cdot 3^{2} \cdot 7 \cdot 11\)
Sign: $-0.968 + 0.250i$
Analytic conductor: \(11.0672\)
Root analytic conductor: \(3.32675\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1386} (793, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(1\)
Selberg data: \((2,\ 1386,\ (\ :1/2),\ -0.968 + 0.250i)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.5 - 0.866i)T \)
3 \( 1 \)
7 \( 1 + (0.5 + 2.59i)T \)
11 \( 1 + (0.5 + 0.866i)T \)
good5 \( 1 + (-2.5 - 4.33i)T^{2} \)
13 \( 1 + T + 13T^{2} \)
17 \( 1 + (3 + 5.19i)T + (-8.5 + 14.7i)T^{2} \)
19 \( 1 + (1 - 1.73i)T + (-9.5 - 16.4i)T^{2} \)
23 \( 1 + (3 - 5.19i)T + (-11.5 - 19.9i)T^{2} \)
29 \( 1 + 9T + 29T^{2} \)
31 \( 1 + (-2 - 3.46i)T + (-15.5 + 26.8i)T^{2} \)
37 \( 1 + (1 - 1.73i)T + (-18.5 - 32.0i)T^{2} \)
41 \( 1 - 6T + 41T^{2} \)
43 \( 1 + 4T + 43T^{2} \)
47 \( 1 + (3 - 5.19i)T + (-23.5 - 40.7i)T^{2} \)
53 \( 1 + (-26.5 + 45.8i)T^{2} \)
59 \( 1 + (1.5 + 2.59i)T + (-29.5 + 51.0i)T^{2} \)
61 \( 1 + (5.5 - 9.52i)T + (-30.5 - 52.8i)T^{2} \)
67 \( 1 + (5.5 + 9.52i)T + (-33.5 + 58.0i)T^{2} \)
71 \( 1 + 71T^{2} \)
73 \( 1 + (1 + 1.73i)T + (-36.5 + 63.2i)T^{2} \)
79 \( 1 + (2.5 - 4.33i)T + (-39.5 - 68.4i)T^{2} \)
83 \( 1 - 6T + 83T^{2} \)
89 \( 1 + (9 - 15.5i)T + (-44.5 - 77.0i)T^{2} \)
97 \( 1 + 13T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.376460646078963123126576875486, −8.275245327040877334989810364762, −7.42453009145221053853016903332, −7.02169740466751354430693005481, −5.98173726066730259603915163837, −5.09235323048924129838600573715, −4.16539820694835223902198448717, −3.09290232622945152361582810853, −1.51054318668163971163136608735, 0, 1.93629854569660215582082347188, 2.60234712402072617122097609065, 3.87903377406070274901156137094, 4.74616764085638489564831537355, 5.88450694678155946372616511428, 6.62319304182279089679844720155, 7.77603050703395187515679246367, 8.548265510824308634608129034699, 9.102094583012696668311044380984

Graph of the $Z$-function along the critical line