L(s) = 1 | + (−0.866 − 0.5i)2-s + (0.499 + 0.866i)4-s + (1.22 − 2.12i)5-s + (−1 + 2.44i)7-s − 0.999i·8-s + (−2.12 + 1.22i)10-s + (−0.866 + 0.5i)11-s + 2.44i·13-s + (2.09 − 1.62i)14-s + (−0.5 + 0.866i)16-s + (0.866 + 1.5i)17-s + (−1.5 − 0.866i)19-s + 2.44·20-s + 0.999·22-s + (−1.07 − 0.621i)23-s + ⋯ |
L(s) = 1 | + (−0.612 − 0.353i)2-s + (0.249 + 0.433i)4-s + (0.547 − 0.948i)5-s + (−0.377 + 0.925i)7-s − 0.353i·8-s + (−0.670 + 0.387i)10-s + (−0.261 + 0.150i)11-s + 0.679i·13-s + (0.558 − 0.433i)14-s + (−0.125 + 0.216i)16-s + (0.210 + 0.363i)17-s + (−0.344 − 0.198i)19-s + 0.547·20-s + 0.213·22-s + (−0.224 − 0.129i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1386 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.410 - 0.912i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1386 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.410 - 0.912i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.9089232774\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9089232774\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.866 + 0.5i)T \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (1 - 2.44i)T \) |
| 11 | \( 1 + (0.866 - 0.5i)T \) |
good | 5 | \( 1 + (-1.22 + 2.12i)T + (-2.5 - 4.33i)T^{2} \) |
| 13 | \( 1 - 2.44iT - 13T^{2} \) |
| 17 | \( 1 + (-0.866 - 1.5i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (1.5 + 0.866i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (1.07 + 0.621i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 - 7.24iT - 29T^{2} \) |
| 31 | \( 1 + (7.24 - 4.18i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (2.62 - 4.54i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 - 8.36T + 41T^{2} \) |
| 43 | \( 1 - T + 43T^{2} \) |
| 47 | \( 1 + (1.37 - 2.37i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (2.30 + 3.98i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-9 - 5.19i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (2.24 + 3.88i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 1.24iT - 71T^{2} \) |
| 73 | \( 1 + (4.24 - 2.44i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (4 - 6.92i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 7.94T + 83T^{2} \) |
| 89 | \( 1 + (-2.95 + 5.12i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 6.63iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.526024951445909016634482736809, −8.930501448848246347442066146070, −8.548476477379778955376012152234, −7.40270039900679333102873621304, −6.45674044701306664277197051271, −5.54988868575649781454133669258, −4.76230908977145404416609053270, −3.48574367099021206298892565246, −2.30680172020370092263422997709, −1.39137989403283734565056790995,
0.45492873854361321779354912078, 2.11169663435721733875371032799, 3.15028136939763680781396950707, 4.24288101465527373997218789787, 5.66768720051519828286214799695, 6.16800769161298754043182702861, 7.21094747845942552182034397946, 7.57021684937986702427255611667, 8.585408910169913929301937714097, 9.708484705143657379454642323884