L(s) = 1 | + (−0.866 − 0.5i)2-s + (0.499 + 0.866i)4-s + (0.0340 − 0.0590i)5-s + (−2.19 − 1.48i)7-s − 0.999i·8-s + (−0.0590 + 0.0340i)10-s + (−0.866 + 0.5i)11-s + 2.44i·13-s + (1.15 + 2.38i)14-s + (−0.5 + 0.866i)16-s + (−0.817 − 1.41i)17-s + (6.28 + 3.62i)19-s + 0.0681·20-s + 0.999·22-s + (−0.405 − 0.233i)23-s + ⋯ |
L(s) = 1 | + (−0.612 − 0.353i)2-s + (0.249 + 0.433i)4-s + (0.0152 − 0.0263i)5-s + (−0.827 − 0.560i)7-s − 0.353i·8-s + (−0.0186 + 0.0107i)10-s + (−0.261 + 0.150i)11-s + 0.679i·13-s + (0.308 + 0.636i)14-s + (−0.125 + 0.216i)16-s + (−0.198 − 0.343i)17-s + (1.44 + 0.832i)19-s + 0.0152·20-s + 0.213·22-s + (−0.0844 − 0.0487i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1386 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.807 + 0.589i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1386 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.807 + 0.589i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.049283179\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.049283179\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.866 + 0.5i)T \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (2.19 + 1.48i)T \) |
| 11 | \( 1 + (0.866 - 0.5i)T \) |
good | 5 | \( 1 + (-0.0340 + 0.0590i)T + (-2.5 - 4.33i)T^{2} \) |
| 13 | \( 1 - 2.44iT - 13T^{2} \) |
| 17 | \( 1 + (0.817 + 1.41i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-6.28 - 3.62i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (0.405 + 0.233i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + 7.23iT - 29T^{2} \) |
| 31 | \( 1 + (0.201 - 0.116i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-2.74 + 4.75i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + 5.38T + 41T^{2} \) |
| 43 | \( 1 - 9.64T + 43T^{2} \) |
| 47 | \( 1 + (-4.31 + 7.46i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-7.34 + 4.23i)T + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (0.439 + 0.760i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (8.63 + 4.98i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-1.52 - 2.64i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 15.8iT - 71T^{2} \) |
| 73 | \( 1 + (-6.76 + 3.90i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-5.76 + 9.98i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 17.1T + 83T^{2} \) |
| 89 | \( 1 + (-5.33 + 9.24i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 9.99iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.535388700749631801783190881723, −8.957519951047449062750325330263, −7.76416539064474246709114293438, −7.27617458955811080473404533169, −6.38576189370233411156094302232, −5.37281168744074261285009442664, −4.10966042269207682219255683872, −3.32386733151507176540267794291, −2.17521287269402542179947594059, −0.75538822869407592697024860327,
0.867751934221223898710504501988, 2.54249615772210774631468221955, 3.31889641775730839643376172842, 4.83766164608747653543670574780, 5.67224830968862221825978454976, 6.43695799447843433256731935242, 7.27363042339905237491006976137, 8.064888609109936508059847412130, 8.990718614279377723079638030287, 9.430888034658628789965556044720