Properties

Label 2-1386-1.1-c1-0-23
Degree $2$
Conductor $1386$
Sign $-1$
Analytic cond. $11.0672$
Root an. cond. $3.32675$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 2·5-s − 7-s + 8-s − 2·10-s − 11-s − 4·13-s − 14-s + 16-s + 4·19-s − 2·20-s − 22-s − 4·23-s − 25-s − 4·26-s − 28-s − 2·29-s − 10·31-s + 32-s + 2·35-s − 6·37-s + 4·38-s − 2·40-s − 4·43-s − 44-s − 4·46-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 0.894·5-s − 0.377·7-s + 0.353·8-s − 0.632·10-s − 0.301·11-s − 1.10·13-s − 0.267·14-s + 1/4·16-s + 0.917·19-s − 0.447·20-s − 0.213·22-s − 0.834·23-s − 1/5·25-s − 0.784·26-s − 0.188·28-s − 0.371·29-s − 1.79·31-s + 0.176·32-s + 0.338·35-s − 0.986·37-s + 0.648·38-s − 0.316·40-s − 0.609·43-s − 0.150·44-s − 0.589·46-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1386 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1386 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1386\)    =    \(2 \cdot 3^{2} \cdot 7 \cdot 11\)
Sign: $-1$
Analytic conductor: \(11.0672\)
Root analytic conductor: \(3.32675\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: $\chi_{1386} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1386,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 \)
7 \( 1 + T \)
11 \( 1 + T \)
good5 \( 1 + 2 T + p T^{2} \)
13 \( 1 + 4 T + p T^{2} \)
17 \( 1 + p T^{2} \)
19 \( 1 - 4 T + p T^{2} \)
23 \( 1 + 4 T + p T^{2} \)
29 \( 1 + 2 T + p T^{2} \)
31 \( 1 + 10 T + p T^{2} \)
37 \( 1 + 6 T + p T^{2} \)
41 \( 1 + p T^{2} \)
43 \( 1 + 4 T + p T^{2} \)
47 \( 1 + 10 T + p T^{2} \)
53 \( 1 - 14 T + p T^{2} \)
59 \( 1 + 10 T + p T^{2} \)
61 \( 1 + 8 T + p T^{2} \)
67 \( 1 - 8 T + p T^{2} \)
71 \( 1 - 4 T + p T^{2} \)
73 \( 1 - 4 T + p T^{2} \)
79 \( 1 - 16 T + p T^{2} \)
83 \( 1 + 4 T + p T^{2} \)
89 \( 1 + 10 T + p T^{2} \)
97 \( 1 - 6 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.278123263471734382728273256445, −8.085838808436017661666180332862, −7.47160076799445304063607589326, −6.81376239244202158997461277739, −5.64283316816673405468499778451, −4.96360142275870366848623108181, −3.90068439822755419122695958551, −3.23324115647284242077206608800, −2.00597606234881909225076458985, 0, 2.00597606234881909225076458985, 3.23324115647284242077206608800, 3.90068439822755419122695958551, 4.96360142275870366848623108181, 5.64283316816673405468499778451, 6.81376239244202158997461277739, 7.47160076799445304063607589326, 8.085838808436017661666180332862, 9.278123263471734382728273256445

Graph of the $Z$-function along the critical line