Properties

Label 2-138-69.44-c1-0-6
Degree $2$
Conductor $138$
Sign $-0.375 + 0.926i$
Analytic cond. $1.10193$
Root an. cond. $1.04973$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.540 + 0.841i)2-s + (0.0700 − 1.73i)3-s + (−0.415 − 0.909i)4-s + (−3.21 − 0.943i)5-s + (1.41 + 0.994i)6-s + (−1.80 − 1.56i)7-s + (0.989 + 0.142i)8-s + (−2.99 − 0.242i)9-s + (2.53 − 2.19i)10-s + (0.146 − 0.0943i)11-s + (−1.60 + 0.655i)12-s + (0.435 + 0.502i)13-s + (2.29 − 0.673i)14-s + (−1.85 + 5.49i)15-s + (−0.654 + 0.755i)16-s + (1.46 − 3.19i)17-s + ⋯
L(s)  = 1  + (−0.382 + 0.594i)2-s + (0.0404 − 0.999i)3-s + (−0.207 − 0.454i)4-s + (−1.43 − 0.421i)5-s + (0.578 + 0.406i)6-s + (−0.683 − 0.591i)7-s + (0.349 + 0.0503i)8-s + (−0.996 − 0.0808i)9-s + (0.800 − 0.693i)10-s + (0.0442 − 0.0284i)11-s + (−0.462 + 0.189i)12-s + (0.120 + 0.139i)13-s + (0.613 − 0.180i)14-s + (−0.479 + 1.41i)15-s + (−0.163 + 0.188i)16-s + (0.354 − 0.775i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 138 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.375 + 0.926i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 138 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.375 + 0.926i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(138\)    =    \(2 \cdot 3 \cdot 23\)
Sign: $-0.375 + 0.926i$
Analytic conductor: \(1.10193\)
Root analytic conductor: \(1.04973\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{138} (113, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 138,\ (\ :1/2),\ -0.375 + 0.926i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.287687 - 0.427070i\)
\(L(\frac12)\) \(\approx\) \(0.287687 - 0.427070i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.540 - 0.841i)T \)
3 \( 1 + (-0.0700 + 1.73i)T \)
23 \( 1 + (-2.56 + 4.05i)T \)
good5 \( 1 + (3.21 + 0.943i)T + (4.20 + 2.70i)T^{2} \)
7 \( 1 + (1.80 + 1.56i)T + (0.996 + 6.92i)T^{2} \)
11 \( 1 + (-0.146 + 0.0943i)T + (4.56 - 10.0i)T^{2} \)
13 \( 1 + (-0.435 - 0.502i)T + (-1.85 + 12.8i)T^{2} \)
17 \( 1 + (-1.46 + 3.19i)T + (-11.1 - 12.8i)T^{2} \)
19 \( 1 + (-6.08 + 2.78i)T + (12.4 - 14.3i)T^{2} \)
29 \( 1 + (5.54 + 2.53i)T + (18.9 + 21.9i)T^{2} \)
31 \( 1 + (1.22 - 8.55i)T + (-29.7 - 8.73i)T^{2} \)
37 \( 1 + (2.59 + 8.84i)T + (-31.1 + 20.0i)T^{2} \)
41 \( 1 + (0.791 - 2.69i)T + (-34.4 - 22.1i)T^{2} \)
43 \( 1 + (5.73 - 0.824i)T + (41.2 - 12.1i)T^{2} \)
47 \( 1 - 7.88iT - 47T^{2} \)
53 \( 1 + (-7.73 + 8.93i)T + (-7.54 - 52.4i)T^{2} \)
59 \( 1 + (-7.68 + 6.65i)T + (8.39 - 58.3i)T^{2} \)
61 \( 1 + (0.619 + 0.0891i)T + (58.5 + 17.1i)T^{2} \)
67 \( 1 + (-4.04 + 6.29i)T + (-27.8 - 60.9i)T^{2} \)
71 \( 1 + (2.12 - 3.31i)T + (-29.4 - 64.5i)T^{2} \)
73 \( 1 + (2.52 + 5.53i)T + (-47.8 + 55.1i)T^{2} \)
79 \( 1 + (3.93 - 3.40i)T + (11.2 - 78.1i)T^{2} \)
83 \( 1 + (-11.4 + 3.34i)T + (69.8 - 44.8i)T^{2} \)
89 \( 1 + (-2.16 - 15.0i)T + (-85.3 + 25.0i)T^{2} \)
97 \( 1 + (1.10 - 3.76i)T + (-81.6 - 52.4i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.89053734148107053842941238620, −11.93169230233870548775171023429, −11.04164470441410858392503567956, −9.420400681608262910343338340233, −8.377376606795605614859454097000, −7.38315655554432107038726204652, −6.85438032192300310615161827224, −5.15928054510297351222088236878, −3.44101748572732251403013816507, −0.60102830555526306943744187145, 3.18752177695757134439454584521, 3.86322877543449006011483223901, 5.56931850114443235561850754952, 7.41580006776251228937541864170, 8.459291322958385232547885293685, 9.520884035685781149649475977734, 10.42733427454645250899990829290, 11.54739184938148497717780157648, 11.96186287828523588380400763764, 13.35203103242392038750577068280

Graph of the $Z$-function along the critical line