Properties

Label 2-138-69.44-c1-0-3
Degree $2$
Conductor $138$
Sign $0.894 - 0.447i$
Analytic cond. $1.10193$
Root an. cond. $1.04973$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.540 + 0.841i)2-s + (1.70 − 0.282i)3-s + (−0.415 − 0.909i)4-s + (2.84 + 0.836i)5-s + (−0.686 + 1.59i)6-s + (−3.02 − 2.61i)7-s + (0.989 + 0.142i)8-s + (2.84 − 0.964i)9-s + (−2.24 + 1.94i)10-s + (−2.79 + 1.79i)11-s + (−0.966 − 1.43i)12-s + (1.31 + 1.51i)13-s + (3.83 − 1.12i)14-s + (5.10 + 0.625i)15-s + (−0.654 + 0.755i)16-s + (−0.139 + 0.306i)17-s + ⋯
L(s)  = 1  + (−0.382 + 0.594i)2-s + (0.986 − 0.162i)3-s + (−0.207 − 0.454i)4-s + (1.27 + 0.374i)5-s + (−0.280 + 0.649i)6-s + (−1.14 − 0.990i)7-s + (0.349 + 0.0503i)8-s + (0.946 − 0.321i)9-s + (−0.709 + 0.614i)10-s + (−0.842 + 0.541i)11-s + (−0.279 − 0.414i)12-s + (0.365 + 0.421i)13-s + (1.02 − 0.301i)14-s + (1.31 + 0.161i)15-s + (−0.163 + 0.188i)16-s + (−0.0339 + 0.0742i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 138 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.894 - 0.447i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 138 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.894 - 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(138\)    =    \(2 \cdot 3 \cdot 23\)
Sign: $0.894 - 0.447i$
Analytic conductor: \(1.10193\)
Root analytic conductor: \(1.04973\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{138} (113, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 138,\ (\ :1/2),\ 0.894 - 0.447i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.22945 + 0.290466i\)
\(L(\frac12)\) \(\approx\) \(1.22945 + 0.290466i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.540 - 0.841i)T \)
3 \( 1 + (-1.70 + 0.282i)T \)
23 \( 1 + (-0.384 - 4.78i)T \)
good5 \( 1 + (-2.84 - 0.836i)T + (4.20 + 2.70i)T^{2} \)
7 \( 1 + (3.02 + 2.61i)T + (0.996 + 6.92i)T^{2} \)
11 \( 1 + (2.79 - 1.79i)T + (4.56 - 10.0i)T^{2} \)
13 \( 1 + (-1.31 - 1.51i)T + (-1.85 + 12.8i)T^{2} \)
17 \( 1 + (0.139 - 0.306i)T + (-11.1 - 12.8i)T^{2} \)
19 \( 1 + (4.42 - 2.02i)T + (12.4 - 14.3i)T^{2} \)
29 \( 1 + (6.14 + 2.80i)T + (18.9 + 21.9i)T^{2} \)
31 \( 1 + (-1.10 + 7.71i)T + (-29.7 - 8.73i)T^{2} \)
37 \( 1 + (2.31 + 7.87i)T + (-31.1 + 20.0i)T^{2} \)
41 \( 1 + (0.321 - 1.09i)T + (-34.4 - 22.1i)T^{2} \)
43 \( 1 + (0.439 - 0.0632i)T + (41.2 - 12.1i)T^{2} \)
47 \( 1 - 8.33iT - 47T^{2} \)
53 \( 1 + (-0.581 + 0.671i)T + (-7.54 - 52.4i)T^{2} \)
59 \( 1 + (-3.38 + 2.93i)T + (8.39 - 58.3i)T^{2} \)
61 \( 1 + (-7.37 - 1.05i)T + (58.5 + 17.1i)T^{2} \)
67 \( 1 + (6.97 - 10.8i)T + (-27.8 - 60.9i)T^{2} \)
71 \( 1 + (-6.79 + 10.5i)T + (-29.4 - 64.5i)T^{2} \)
73 \( 1 + (-4.56 - 9.98i)T + (-47.8 + 55.1i)T^{2} \)
79 \( 1 + (-11.8 + 10.2i)T + (11.2 - 78.1i)T^{2} \)
83 \( 1 + (5.91 - 1.73i)T + (69.8 - 44.8i)T^{2} \)
89 \( 1 + (-1.63 - 11.3i)T + (-85.3 + 25.0i)T^{2} \)
97 \( 1 + (-1.88 + 6.41i)T + (-81.6 - 52.4i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.31887761555741826993596369558, −12.98236574687955616340883440513, −10.66862446999671502762529528285, −9.819817223827960067168917857747, −9.343514913612498729222460848742, −7.82732099958046823223091986182, −6.90124121478584985403622597801, −5.93038129634725635235037993717, −3.91710814162986135438786675395, −2.15329251566716511001043378549, 2.21212622813785794060467662527, 3.20878092133097400175198512903, 5.23686928848773348830532905687, 6.59172402488511011597025122915, 8.459257283359410311942633816423, 8.960242113059497643169652097624, 9.919332987560440930978378425481, 10.64219174745809116968476005545, 12.50782418388586721881579045542, 13.07687063605190143779678809947

Graph of the $Z$-function along the critical line