Properties

Label 2-138-1.1-c3-0-3
Degree $2$
Conductor $138$
Sign $1$
Analytic cond. $8.14226$
Root an. cond. $2.85346$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s − 3·3-s + 4·4-s + 15.3·5-s − 6·6-s − 5.31·7-s + 8·8-s + 9·9-s + 30.6·10-s − 21.2·11-s − 12·12-s + 87.2·13-s − 10.6·14-s − 45.9·15-s + 16·16-s + 18.0·17-s + 18·18-s + 47.9·19-s + 61.2·20-s + 15.9·21-s − 42.5·22-s + 23·23-s − 24·24-s + 109.·25-s + 174.·26-s − 27·27-s − 21.2·28-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 0.5·4-s + 1.36·5-s − 0.408·6-s − 0.286·7-s + 0.353·8-s + 0.333·9-s + 0.968·10-s − 0.582·11-s − 0.288·12-s + 1.86·13-s − 0.202·14-s − 0.790·15-s + 0.250·16-s + 0.257·17-s + 0.235·18-s + 0.578·19-s + 0.684·20-s + 0.165·21-s − 0.411·22-s + 0.208·23-s − 0.204·24-s + 0.876·25-s + 1.31·26-s − 0.192·27-s − 0.143·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 138 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 138 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(138\)    =    \(2 \cdot 3 \cdot 23\)
Sign: $1$
Analytic conductor: \(8.14226\)
Root analytic conductor: \(2.85346\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 138,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.618716729\)
\(L(\frac12)\) \(\approx\) \(2.618716729\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 2T \)
3 \( 1 + 3T \)
23 \( 1 - 23T \)
good5 \( 1 - 15.3T + 125T^{2} \)
7 \( 1 + 5.31T + 343T^{2} \)
11 \( 1 + 21.2T + 1.33e3T^{2} \)
13 \( 1 - 87.2T + 2.19e3T^{2} \)
17 \( 1 - 18.0T + 4.91e3T^{2} \)
19 \( 1 - 47.9T + 6.85e3T^{2} \)
29 \( 1 - 179.T + 2.43e4T^{2} \)
31 \( 1 + 117.T + 2.97e4T^{2} \)
37 \( 1 + 410.T + 5.06e4T^{2} \)
41 \( 1 + 205.T + 6.89e4T^{2} \)
43 \( 1 + 149.T + 7.95e4T^{2} \)
47 \( 1 + 299.T + 1.03e5T^{2} \)
53 \( 1 + 295.T + 1.48e5T^{2} \)
59 \( 1 - 737.T + 2.05e5T^{2} \)
61 \( 1 - 550.T + 2.26e5T^{2} \)
67 \( 1 + 527.T + 3.00e5T^{2} \)
71 \( 1 + 297.T + 3.57e5T^{2} \)
73 \( 1 + 714.T + 3.89e5T^{2} \)
79 \( 1 + 834.T + 4.93e5T^{2} \)
83 \( 1 - 795.T + 5.71e5T^{2} \)
89 \( 1 - 46.9T + 7.04e5T^{2} \)
97 \( 1 - 1.03e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.06297512713794133088165406303, −11.77132133178420240247562408527, −10.68506598721816554621254007694, −9.938604545736183278032629847190, −8.546084886113601534665212586362, −6.80208346104643020606869581440, −5.94226890369352567012204560882, −5.12393301609889072256066311336, −3.33485659241343596257120943457, −1.55272768742799469341643332450, 1.55272768742799469341643332450, 3.33485659241343596257120943457, 5.12393301609889072256066311336, 5.94226890369352567012204560882, 6.80208346104643020606869581440, 8.546084886113601534665212586362, 9.938604545736183278032629847190, 10.68506598721816554621254007694, 11.77132133178420240247562408527, 13.06297512713794133088165406303

Graph of the $Z$-function along the critical line