Properties

Label 2-1368-57.56-c1-0-15
Degree $2$
Conductor $1368$
Sign $0.662 + 0.749i$
Analytic cond. $10.9235$
Root an. cond. $3.30507$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.41i·5-s + 2·7-s − 4.24i·11-s − 2.82i·13-s − 7.07i·17-s + (−1 + 4.24i)19-s − 1.41i·23-s + 2.99·25-s − 10·29-s − 2.82i·31-s + 2.82i·35-s − 5.65i·37-s + 10·41-s + 12·43-s + 1.41i·47-s + ⋯
L(s)  = 1  + 0.632i·5-s + 0.755·7-s − 1.27i·11-s − 0.784i·13-s − 1.71i·17-s + (−0.229 + 0.973i)19-s − 0.294i·23-s + 0.599·25-s − 1.85·29-s − 0.508i·31-s + 0.478i·35-s − 0.929i·37-s + 1.56·41-s + 1.82·43-s + 0.206i·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1368 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.662 + 0.749i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1368 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.662 + 0.749i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1368\)    =    \(2^{3} \cdot 3^{2} \cdot 19\)
Sign: $0.662 + 0.749i$
Analytic conductor: \(10.9235\)
Root analytic conductor: \(3.30507\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1368} (1025, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1368,\ (\ :1/2),\ 0.662 + 0.749i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.675006653\)
\(L(\frac12)\) \(\approx\) \(1.675006653\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
19 \( 1 + (1 - 4.24i)T \)
good5 \( 1 - 1.41iT - 5T^{2} \)
7 \( 1 - 2T + 7T^{2} \)
11 \( 1 + 4.24iT - 11T^{2} \)
13 \( 1 + 2.82iT - 13T^{2} \)
17 \( 1 + 7.07iT - 17T^{2} \)
23 \( 1 + 1.41iT - 23T^{2} \)
29 \( 1 + 10T + 29T^{2} \)
31 \( 1 + 2.82iT - 31T^{2} \)
37 \( 1 + 5.65iT - 37T^{2} \)
41 \( 1 - 10T + 41T^{2} \)
43 \( 1 - 12T + 43T^{2} \)
47 \( 1 - 1.41iT - 47T^{2} \)
53 \( 1 - 10T + 53T^{2} \)
59 \( 1 + 12T + 59T^{2} \)
61 \( 1 - 8T + 61T^{2} \)
67 \( 1 - 14.1iT - 67T^{2} \)
71 \( 1 + 8T + 71T^{2} \)
73 \( 1 - 6T + 73T^{2} \)
79 \( 1 + 11.3iT - 79T^{2} \)
83 \( 1 + 4.24iT - 83T^{2} \)
89 \( 1 - 6T + 89T^{2} \)
97 \( 1 + 8.48iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.402570657259317195297189230545, −8.700336458057566366144449959824, −7.68440395351289788178872173461, −7.31226398822311594873483251285, −5.94722235434439467794277978307, −5.53403863207904805216335855968, −4.30487931468662572123154714922, −3.26081149359672097723831814931, −2.37413099458576657242682178528, −0.73690625139353493193060173269, 1.40742200417023422299684696570, 2.25532421018789825959488073162, 3.94977891689844462860883213180, 4.56176659526076967099782153703, 5.38833416481285594707329183524, 6.45817429480847979334115785106, 7.36055389012067583927051587305, 8.075771189874845261506942247365, 9.028401097517210982921788062384, 9.442187623633944833672928784863

Graph of the $Z$-function along the critical line