Properties

Label 2-1368-456.197-c0-0-0
Degree $2$
Conductor $1368$
Sign $0.536 - 0.843i$
Analytic cond. $0.682720$
Root an. cond. $0.826269$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.258 + 0.965i)2-s + (−0.866 − 0.499i)4-s − 7-s + (0.707 − 0.707i)8-s + 1.41·11-s + (−0.866 − 0.5i)13-s + (0.258 − 0.965i)14-s + (0.500 + 0.866i)16-s + (1.22 − 0.707i)17-s + i·19-s + (−0.366 + 1.36i)22-s + (1.22 + 0.707i)23-s + (0.5 − 0.866i)25-s + (0.707 − 0.707i)26-s + (0.866 + 0.499i)28-s + (−0.707 + 1.22i)29-s + ⋯
L(s)  = 1  + (−0.258 + 0.965i)2-s + (−0.866 − 0.499i)4-s − 7-s + (0.707 − 0.707i)8-s + 1.41·11-s + (−0.866 − 0.5i)13-s + (0.258 − 0.965i)14-s + (0.500 + 0.866i)16-s + (1.22 − 0.707i)17-s + i·19-s + (−0.366 + 1.36i)22-s + (1.22 + 0.707i)23-s + (0.5 − 0.866i)25-s + (0.707 − 0.707i)26-s + (0.866 + 0.499i)28-s + (−0.707 + 1.22i)29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1368 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.536 - 0.843i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1368 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.536 - 0.843i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1368\)    =    \(2^{3} \cdot 3^{2} \cdot 19\)
Sign: $0.536 - 0.843i$
Analytic conductor: \(0.682720\)
Root analytic conductor: \(0.826269\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{1368} (197, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1368,\ (\ :0),\ 0.536 - 0.843i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.8522488781\)
\(L(\frac12)\) \(\approx\) \(0.8522488781\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.258 - 0.965i)T \)
3 \( 1 \)
19 \( 1 - iT \)
good5 \( 1 + (-0.5 + 0.866i)T^{2} \)
7 \( 1 + T + T^{2} \)
11 \( 1 - 1.41T + T^{2} \)
13 \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \)
17 \( 1 + (-1.22 + 0.707i)T + (0.5 - 0.866i)T^{2} \)
23 \( 1 + (-1.22 - 0.707i)T + (0.5 + 0.866i)T^{2} \)
29 \( 1 + (0.707 - 1.22i)T + (-0.5 - 0.866i)T^{2} \)
31 \( 1 - T + T^{2} \)
37 \( 1 + iT - T^{2} \)
41 \( 1 + (0.5 - 0.866i)T^{2} \)
43 \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \)
47 \( 1 + (-1.22 - 0.707i)T + (0.5 + 0.866i)T^{2} \)
53 \( 1 + (-0.707 + 1.22i)T + (-0.5 - 0.866i)T^{2} \)
59 \( 1 + (-0.5 + 0.866i)T^{2} \)
61 \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \)
67 \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \)
71 \( 1 + (0.5 - 0.866i)T^{2} \)
73 \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \)
79 \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \)
83 \( 1 + 1.41T + T^{2} \)
89 \( 1 + (0.5 + 0.866i)T^{2} \)
97 \( 1 + (1 + 1.73i)T + (-0.5 + 0.866i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.764924422026460521963069800201, −9.139848980764325709547579075238, −8.285309482844904467663830194717, −7.23037395436961702916495072498, −6.85764058349519308751770156612, −5.85312411881394611447825479008, −5.16813073671530869314154585032, −3.97806517890741944639866573825, −3.09047952805879842062926080407, −1.11498877643200776361233230571, 1.09987514374400221716913900359, 2.53257321682193062792767812108, 3.44161558601796967538204356814, 4.27142567997613092875469612002, 5.29097769577975670440728418728, 6.54355512705715603549740680667, 7.17719240692743235539184392632, 8.342725265947807493791338867100, 9.189960871061941416131426413213, 9.608739714063098056867512452019

Graph of the $Z$-function along the critical line