| L(s) = 1 | + 2-s + (−0.5 − 0.866i)3-s + 4-s + (−0.5 − 0.866i)6-s + 8-s + (−0.499 + 0.866i)9-s + (−1 − 1.73i)11-s + (−0.5 − 0.866i)12-s + 16-s + (0.5 − 0.866i)17-s + (−0.499 + 0.866i)18-s + 19-s + (−1 − 1.73i)22-s + (−0.5 − 0.866i)24-s + (−0.5 + 0.866i)25-s + ⋯ |
| L(s) = 1 | + 2-s + (−0.5 − 0.866i)3-s + 4-s + (−0.5 − 0.866i)6-s + 8-s + (−0.499 + 0.866i)9-s + (−1 − 1.73i)11-s + (−0.5 − 0.866i)12-s + 16-s + (0.5 − 0.866i)17-s + (−0.499 + 0.866i)18-s + 19-s + (−1 − 1.73i)22-s + (−0.5 − 0.866i)24-s + (−0.5 + 0.866i)25-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1368 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.377 + 0.925i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1368 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.377 + 0.925i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.675740766\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.675740766\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 - T \) |
| 3 | \( 1 + (0.5 + 0.866i)T \) |
| 19 | \( 1 - T \) |
| good | 5 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 7 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (1 + 1.73i)T + (-0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 - T^{2} \) |
| 17 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 - T^{2} \) |
| 29 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 31 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 - T^{2} \) |
| 41 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 43 | \( 1 + T + T^{2} \) |
| 47 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 59 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + T + T^{2} \) |
| 71 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 73 | \( 1 + (1 - 1.73i)T + (-0.5 - 0.866i)T^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 89 | \( 1 + (1 + 1.73i)T + (-0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 - 2T + T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.864479568909705467475486134678, −8.504353236912691631248548878968, −7.70703983486328758816680507904, −7.16891998039505855706247864239, −6.01995005770348045884318893545, −5.60612457448574239441537681935, −4.85566921462868626831538754276, −3.32379899449556343526853567375, −2.70968048426587108429779118541, −1.19095235372130077440993126435,
1.96570688891125341170354393523, 3.17504849756498667230766547579, 4.13335733852875406146776655894, 4.90040998567246129818852550110, 5.50356808072668493089014499172, 6.42355668609849813766621903921, 7.35058419738252049834606447643, 8.119422975356664011586898569850, 9.488287464231363701618401999262, 10.23964752453507542887075538181