| L(s) = 1 | + (0.173 − 0.984i)2-s − 3-s + (−0.939 − 0.342i)4-s + (−0.173 + 0.984i)6-s + (−0.5 + 0.866i)8-s + 9-s + 1.28i·11-s + (0.939 + 0.342i)12-s + (0.766 + 0.642i)16-s + (1.11 − 1.32i)17-s + (0.173 − 0.984i)18-s + (0.939 + 0.342i)19-s + (1.26 + 0.223i)22-s + (0.5 − 0.866i)24-s + (−0.173 − 0.984i)25-s + ⋯ |
| L(s) = 1 | + (0.173 − 0.984i)2-s − 3-s + (−0.939 − 0.342i)4-s + (−0.173 + 0.984i)6-s + (−0.5 + 0.866i)8-s + 9-s + 1.28i·11-s + (0.939 + 0.342i)12-s + (0.766 + 0.642i)16-s + (1.11 − 1.32i)17-s + (0.173 − 0.984i)18-s + (0.939 + 0.342i)19-s + (1.26 + 0.223i)22-s + (0.5 − 0.866i)24-s + (−0.173 − 0.984i)25-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1368 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.342 + 0.939i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1368 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.342 + 0.939i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8016015706\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.8016015706\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (-0.173 + 0.984i)T \) |
| 3 | \( 1 + T \) |
| 19 | \( 1 + (-0.939 - 0.342i)T \) |
| good | 5 | \( 1 + (0.173 + 0.984i)T^{2} \) |
| 7 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 - 1.28iT - T^{2} \) |
| 13 | \( 1 + (0.173 - 0.984i)T^{2} \) |
| 17 | \( 1 + (-1.11 + 1.32i)T + (-0.173 - 0.984i)T^{2} \) |
| 23 | \( 1 + (0.766 + 0.642i)T^{2} \) |
| 29 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( 1 + T^{2} \) |
| 41 | \( 1 + (0.266 - 1.50i)T + (-0.939 - 0.342i)T^{2} \) |
| 43 | \( 1 + (-1.87 + 0.684i)T + (0.766 - 0.642i)T^{2} \) |
| 47 | \( 1 + (0.766 + 0.642i)T^{2} \) |
| 53 | \( 1 + (0.939 - 0.342i)T^{2} \) |
| 59 | \( 1 + (0.326 - 0.118i)T + (0.766 - 0.642i)T^{2} \) |
| 61 | \( 1 + (-0.173 + 0.984i)T^{2} \) |
| 67 | \( 1 + (-1.26 + 0.223i)T + (0.939 - 0.342i)T^{2} \) |
| 71 | \( 1 + (0.939 + 0.342i)T^{2} \) |
| 73 | \( 1 + (-1.43 + 0.524i)T + (0.766 - 0.642i)T^{2} \) |
| 79 | \( 1 + (0.173 + 0.984i)T^{2} \) |
| 83 | \( 1 + (1.70 + 0.984i)T + (0.5 + 0.866i)T^{2} \) |
| 89 | \( 1 + (-0.939 - 0.342i)T + (0.766 + 0.642i)T^{2} \) |
| 97 | \( 1 + (-0.673 - 0.118i)T + (0.939 + 0.342i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.827988024321944433758055840042, −9.354603206407527304639542606683, −7.933354768427975036712586882167, −7.21223876325451445431681001191, −6.09771884934781324282359397284, −5.16241690347600198825276577203, −4.65983177685473246492024517130, −3.58445489712590700540896690553, −2.31532449828612221869500516391, −1.03046867023738215208466821681,
1.06824133410458858643937277153, 3.33295228093235711734059214919, 4.12343823278655515390973869361, 5.41349031288206695145463319191, 5.66879016393376835621794877960, 6.50926498453366966814249452942, 7.44572072782062578012628653461, 8.079681021261766498520577683591, 9.080517828765379451603313051059, 9.839693139671879205298101822632