L(s) = 1 | + (0.5 − 0.866i)2-s + (−0.499 − 0.866i)4-s + (0.5 − 0.866i)7-s − 0.999·8-s + (−1 + 1.73i)11-s + (3 + 5.19i)13-s + (−0.499 − 0.866i)14-s + (−0.5 + 0.866i)16-s + 2·17-s + 6·19-s + (0.999 + 1.73i)22-s + (0.5 + 0.866i)23-s + 6·26-s − 0.999·28-s + (4.5 − 7.79i)29-s + ⋯ |
L(s) = 1 | + (0.353 − 0.612i)2-s + (−0.249 − 0.433i)4-s + (0.188 − 0.327i)7-s − 0.353·8-s + (−0.301 + 0.522i)11-s + (0.832 + 1.44i)13-s + (−0.133 − 0.231i)14-s + (−0.125 + 0.216i)16-s + 0.485·17-s + 1.37·19-s + (0.213 + 0.369i)22-s + (0.104 + 0.180i)23-s + 1.17·26-s − 0.188·28-s + (0.835 − 1.44i)29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1350 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.766 + 0.642i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1350 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.766 + 0.642i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.102054966\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.102054966\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.5 + 0.866i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 7 | \( 1 + (-0.5 + 0.866i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (1 - 1.73i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-3 - 5.19i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 - 2T + 17T^{2} \) |
| 19 | \( 1 - 6T + 19T^{2} \) |
| 23 | \( 1 + (-0.5 - 0.866i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-4.5 + 7.79i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-1 - 1.73i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 - 2T + 37T^{2} \) |
| 41 | \( 1 + (5.5 + 9.52i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-2 + 3.46i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (3.5 - 6.06i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + 53T^{2} \) |
| 59 | \( 1 + (2 + 3.46i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-3.5 + 6.06i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-5.5 - 9.52i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 6T + 71T^{2} \) |
| 73 | \( 1 + 4T + 73T^{2} \) |
| 79 | \( 1 + (-6 + 10.3i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (5.5 - 9.52i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + T + 89T^{2} \) |
| 97 | \( 1 + (-4 + 6.92i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.661551721970156061428062779576, −8.904348762536853763362943191910, −7.899356743076805658758081521360, −7.03641321811563206808671022494, −6.12705299990550386674174035839, −5.13509841862378702042054862255, −4.28798078596763913223665098551, −3.46938548816308408760051880023, −2.23833209356571198125667153809, −1.11919988156753806813512814014,
1.03038065239971203891007142409, 2.93027409699647923000437327128, 3.49539953319052853498205150878, 4.94421653299149623475874815360, 5.49168491834556954928837097563, 6.26795048789240915354021246679, 7.28249958751412230256077157485, 8.153927211192121552050246523868, 8.534239114370644041235166018900, 9.652709068434193011728793665670