L(s) = 1 | + (0.5 + 0.866i)2-s + (−0.499 + 0.866i)4-s + (0.5 + 0.866i)7-s − 0.999·8-s + (−1 − 1.73i)11-s + (3 − 5.19i)13-s + (−0.499 + 0.866i)14-s + (−0.5 − 0.866i)16-s + 2·17-s + 6·19-s + (0.999 − 1.73i)22-s + (0.5 − 0.866i)23-s + 6·26-s − 0.999·28-s + (4.5 + 7.79i)29-s + ⋯ |
L(s) = 1 | + (0.353 + 0.612i)2-s + (−0.249 + 0.433i)4-s + (0.188 + 0.327i)7-s − 0.353·8-s + (−0.301 − 0.522i)11-s + (0.832 − 1.44i)13-s + (−0.133 + 0.231i)14-s + (−0.125 − 0.216i)16-s + 0.485·17-s + 1.37·19-s + (0.213 − 0.369i)22-s + (0.104 − 0.180i)23-s + 1.17·26-s − 0.188·28-s + (0.835 + 1.44i)29-s + ⋯ |
Λ(s)=(=(1350s/2ΓC(s)L(s)(0.766−0.642i)Λ(2−s)
Λ(s)=(=(1350s/2ΓC(s+1/2)L(s)(0.766−0.642i)Λ(1−s)
Degree: |
2 |
Conductor: |
1350
= 2⋅33⋅52
|
Sign: |
0.766−0.642i
|
Analytic conductor: |
10.7798 |
Root analytic conductor: |
3.28326 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1350(901,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1350, ( :1/2), 0.766−0.642i)
|
Particular Values
L(1) |
≈ |
2.102054966 |
L(21) |
≈ |
2.102054966 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.5−0.866i)T |
| 3 | 1 |
| 5 | 1 |
good | 7 | 1+(−0.5−0.866i)T+(−3.5+6.06i)T2 |
| 11 | 1+(1+1.73i)T+(−5.5+9.52i)T2 |
| 13 | 1+(−3+5.19i)T+(−6.5−11.2i)T2 |
| 17 | 1−2T+17T2 |
| 19 | 1−6T+19T2 |
| 23 | 1+(−0.5+0.866i)T+(−11.5−19.9i)T2 |
| 29 | 1+(−4.5−7.79i)T+(−14.5+25.1i)T2 |
| 31 | 1+(−1+1.73i)T+(−15.5−26.8i)T2 |
| 37 | 1−2T+37T2 |
| 41 | 1+(5.5−9.52i)T+(−20.5−35.5i)T2 |
| 43 | 1+(−2−3.46i)T+(−21.5+37.2i)T2 |
| 47 | 1+(3.5+6.06i)T+(−23.5+40.7i)T2 |
| 53 | 1+53T2 |
| 59 | 1+(2−3.46i)T+(−29.5−51.0i)T2 |
| 61 | 1+(−3.5−6.06i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−5.5+9.52i)T+(−33.5−58.0i)T2 |
| 71 | 1−6T+71T2 |
| 73 | 1+4T+73T2 |
| 79 | 1+(−6−10.3i)T+(−39.5+68.4i)T2 |
| 83 | 1+(5.5+9.52i)T+(−41.5+71.8i)T2 |
| 89 | 1+T+89T2 |
| 97 | 1+(−4−6.92i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.652709068434193011728793665670, −8.534239114370644041235166018900, −8.153927211192121552050246523868, −7.28249958751412230256077157485, −6.26795048789240915354021246679, −5.49168491834556954928837097563, −4.94421653299149623475874815360, −3.49539953319052853498205150878, −2.93027409699647923000437327128, −1.03038065239971203891007142409,
1.11919988156753806813512814014, 2.23833209356571198125667153809, 3.46938548816308408760051880023, 4.28798078596763913223665098551, 5.13509841862378702042054862255, 6.12705299990550386674174035839, 7.03641321811563206808671022494, 7.899356743076805658758081521360, 8.904348762536853763362943191910, 9.661551721970156061428062779576